Strusture, biomass and production of the biotic component of the ecosystem of an growing eutrophic reservoir


Keywords: groups of hydrobionts; communities of hydrobionts; structure; products; reservoir

Abstract

Using our own data and data from the literature, we assessed the total biomass of the biotic component of the ecosystem of the Ivankovo Reservoir (Upper Volga, Russia), a eutrophic reservoir which is becoming overgrown with macrophytes. The biotic component of freshwater ecosystems is formed by communities of multicellular and unicellular organisms and viruses in the water layer (plankton) and bottom sediments (benthos) and also macrophytes and autotrophic and heterotrophic organisms growing on their surface (epiphyton). The biomass of the biotic component of the Ivankovo Reservoir equaled 39,853 tons С. Plankton, benthos and macrophytes with epiphyton equaled 3.6%, 41.6% and 54.8% of the total biomass respectively. We determined the contribution of higher aquatic plants, algae, cyanobacteria, heterotrophic bacteria, viruses, protozoans, multicellular invertebrates and fish to the formation of total biomass. The largest share was taken up by higher aquatic plants (54.5%). The second largest share was taken by heterotrophic bacteria (37.4%), most of which live in the bottom sediments. The high concentration of bacteria and invertebrates in the bottom sediments indicate significant provision of the organic substrates from the water column. The biomass of fish, the highest trophic link in the reservoir, equaled 15.0% of the biomass of their potential food substrates, invertebrate animals, and 0.7% of the total biomass of the biotic component. The greater part of the autochthonous organic compound in the reservoir is formed as a result of activity of phytoplankton, which provides 69.4% of total primary production of macrophytes, phytoepiphyton, phytoplankton and phytobenthos. The total primary production during the vegetation period was approximately forty times higher than the annual production of the fish. Currently, the share in the phytoplankton of large colonial cyanobacteria not consumed by zooplankton, the share of non-heterocystic species of cyanobacteria capable of heterotrophic feeding and the share of mixotrophic flagellates is increasing. Eutrophication of the reservoir is significantly stimulated by the development of macrophytes, and, presumably, the contribution of macrophytes to the total primary production of the reservoir will continue to increase.

References

Abakumov, V., Akhmet'ev, N., & Brekhovskikh, V. (2000). Ivan'kovskoye vodokhranilishche: Sovremennoye sostoyaniye i problemy okhrany [Ivankovo Reservoir: Current state and problems of protection]. Nauka, Moscow (in Russian).


Auer, B., Elzer, U., & Arndt, H. (2004). Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: Influence of resource and predation. Journal of Plankton Research, 26(6), 697–709.


Avakyan, A. B., Saltankin, V. P., & Sharapov, V. A. (1987). Vodokhranilishcha [Reservoirs]. Mysl', Moscow (in Russian).


Børsheim, K. Y., & Bratbak, G. (1987). Cell volume to carbon conversion factors for bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series, 36, 171–175.


Christoffersen, K., Riemann, B., Hansen, L. R., Klysner, A., & Sørensen, H. B. (1990). Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microbial Ecology, 20(1), 253–272.


Chróst, R. J., Adamczewski, T., Kalinowska, K., & Skowronska, A. (2009). Abundance and structure of microbial loop components (bacteria and protists) in lakes of different trophic status. Journal of Microbiology and Biotechnology, 19(9), 858–868.


Comerma, M., Garsia, J. C., Romero, M., Armengol, J., & Simek, K. (2003). Carbon flow dynamics in the pelagic community of the Sau Reservoir (Catalonia, NE Spain). Hydrobiologia, 504(1–3), 87–98.


Cronin, G., Lewis Jr., W. M., & Schiehser, M. A. (2006). Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany, 85(1), 37–43.


Degermendzhy, A. G., & Gulati, R. D. (2002). Understanding the mechanisms of blooming of phytoplankton in Lake Shira, a saline lake in Siberia (the Republic of Khakasia). Aquatic Ecology, 36(2), 333–340.


Del Giorgio, P. A., & Gasol, J. M. (1995). Biomass distribution in freshwater plankton communities. The American Naturalist, 146(1), 135–152.


Devyatkin, V. G. (1983). Intensivnost' fotosinteza mikrofitobentosa v Ivan'kovskom vodokhranilishche [Intensity of photosynthesis of microphytobenthos in the Ivankovo reservoir]. Biololgiya Vnutrennikh Vod, 59, 18–22 (in Russian).


Dumont, H. J., Van de Velde, I., & Dumont, S. (1975). The dry weight estimate of biomass in selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia, 19(1), 75–97.


Ekzertsev, V. A. (1958). Produktsiya pribrezhno-vodnoy rastitel'nosti Ivan'kovskogo vodokhranilishcha [Production of coastal aquatic vegetation of the Ivankovo reservoir]. Byulleten' Instituta Biologii Vodokhranilishch, 1, 19–21 (in Russian).


Ekzertsev, V. A. (ed.) (1978). Ivan'kovskoye vodokhranilishche i yego zhizn' [Ivankovo reservoir and its life]. Nauka, Leningrad (in Russian).


Fahnenstiel, G. L., Krause, A. E., McCormick, M. J., Carrick, H. J., & Schelske, C. L. (1998). The structure of planktonic food web in the St. Lawrence Great Lakes. Journal of Great Lakes Research, 24(3), 531–554.


Hart, D. R., & Stone, L. (2000). Seasonal dynamics of the Lake Kinneret food web: The importance of the microbial loop. Limnology and Oceanography, 45(2), 350–361. Hon M., Matsui, K., Ueki, M., Nakamura, R., Fuhrman, J. A., & Kawabata, Z. (2006). Diversity of virus-like agents killing Microcystis aeruginosa in a hyper-eutrophic pond. Journal of Plankton Research, 28(4), 407–412.


Kazantseva, T. I. (2003). Balansovaya model' ekosistemy melkogo vysokoevtrofnogo ozera [The balance model of the ecosystem of a small highly-eutrophic lake]. Zhurnal Obshchey Biologii, 64(2), 128–145 (in Russian).


Kolmakov, V. I., Gayevskiy, N. A., & Gladyshev, M. I. (2001). Growth of blue-green microalgae passed through the Carassius auratus (Linnaeus) gut in blooming pond water. Doklady Biological Sciences, 376(1–6), 75–77.


Kolpakov, N. V. (2016). Produktsiya ryb v estuariyakh Primor'ya [Fish production in estuaries of Primorye]. Izvestiya Tikhookeanskogo Nauchno-Issledovatel'skogo Rybokhozyaystvennogo Tsentra, 184, 3–22 (in Russian).


Kopylov, A. I. (ed.) (2001). Ekologicheskiye problemy Verkhney Volgi [Ecological problems of the Upper Volga]. Izdatel'stvo Yaroslavskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Yaroslavl' (in Russian).


Kopylov, A. I., & Kosolapov, D. B. (2008). Bakterioplankton vodokhranilishch Verkhney i Sredney Volgi [Bacterioplankton of the reservoirs of the Upper and Middle Volga]. Izdatel'stvo Sovremennogo Gumanitarnogo Universiteta, Moscow (in Russian).


Kopylov, A. I., Lazareva, V. I., Pyrina, I. L., Myl'nikova, Z. M., & Maslennikova, T. S. (2010). Mikrobnaya “petlya” v planktonnoy troficheskoy seti krupnogo ravninnogo vodokhranilishcha [Microbial "loop" in the planktonic trophic web of a large lowland reservoir]. Uspekhi Sovremennoy Biologii, 6, 544–556 (in Russian).


Kopylov, A. I., Kosolapov, D. B., & Zabotkina, E. A. (2011). Virus impact on heterotrophic bacterioplankton of water reservoirs. Microbiology, 80(2), 228–236.


Kopylov, A. I., Kosolapov, D. B., Rybakova, I. V., & Zabotkina, Y. A. (2014). Mikrobnoye soobshchestvo epifitona vodokhranilishcha: Rol' virusov v smertnosti geterotrofnykh bakteriy i pikotsianobakteriy [Microbial community of the reservoir epiphyton: The role of viruses in the mortality of heterotrophic bacteria and picocyanobacteria]. Uspekhi Sovremennoy Biologii, 134, 111–120 (in Russian).


Kopylov, A. I., Zabotkina, E. A., & Romanenko, A. V. (2015).Viruses in bottom sediments of the eutrophic reservoir (Ivankovskoe Reservoir, Upper Volga). Inland Water Biology, 8(3), 236–241.


Korneva, L. G. (2015). Fitoplankton vodokhranilishch basseyna Volgi [Phytoplankton of reservoirs of the Volga basin]. Kostromskoy Pechatnyy Dom, Kostroma (in Russian).


Norland, S. (1993). The relationship between biomass and volume of bacteria. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL. Pp. 303–308.


MacKay, M. D., Neale, P. J., Arp, C. D., De Senerpont Domis, L. N., Fang, X., Gal, G., Jöhnk, K. D., Kirillin, G., Lenters, J. D., Litchman, E., MacIntyre, S., Marsh, P., Melack, J., Mooij, W. M., Peeters, F., Quesada, A., Schladow, S. G., Schmid, M., Spence, C., & Stokes, S. L. (2009). Modeling lakes and reservoirs in the climate system. Limnology and Oceanography, 54, 2315–2329.


Myl'nikova, Z. M. (1977). Bentosnyye infuzorii i sarkodovyye Rybinskogo vodokhranilishcha [Benthic ciliates and sarcode of the Rybinsk reservoir]. Biololgiya Vnutrennikh Vod, 35, 36–40 (in Russian).


Papchenkov, V. G. (2013). The degree of overgrowth of the Rybinsk Reservoir and productivity of its vegetation cover. Inland Water Biology, 6(1), 18−25.


Poddubnyy, A. G. (1988). Teoriya lokal'nykh stad ryb kak osnova upravleniya ryboproduk-tivnost'yu vnutrennikh vodoyemov [The theory of local fish shoals as a basis for managing fish productivity in the bodies of inland waters]. Trudy IBVV AN SSSR, 55, 142–163 (in Russian).


Poddubnyy, A. G., Volodin, V. M., Konobeyeva, V. K., & Lapitskiy, I. I. (1984). Effektivnost' vosproizvodstva rybnykh zapasov v vodokhranilishchakh [Efficiency of reproduction of fish stocks in the reservoirs]. Biologicheskiye resursy vodokhranilishch. Nauka, Moscow. Pp. 204–227 (in Russian).


Pomeroy, L. R., Williams, P. J. B., Azam, F., & Hobbie, J. E. (2007). The microbial loop. Oceanography, 20(2), 28–33.


Porter, K. G. (1996). Integrating the microbial loop and the classic food chain into a realistic planktonic food web. In: Food webs: Integration of patterns and dynamics. Chapman and Hall, New York.


Pyrina, I. L., & Lyashenko, G. F. (2005). Mnogoletnyaya dinamika produktivnosti fitoplanktona i vysshey vodnoy rastitel'nosti i ikh rol' v produktivnosti organicheskogo veshchestva v zarastayushchem Ivan'kovskom vodokhranilishche [Long-term dynamics of the productivity of phytoplankton and higher aquatic vegetation and their role in the productivity of organic matter in the overgrown Ivankovo reservoir]. Biologiya Vnutrennikh Vod, 3, 48–56 (in Russian).


Reynolds, C. S. (2006). The ecology of phytoplankton. University Press, Cambridge.


Rodhe, W. (1948). Environmental requirements of freshwater plankton algae: Environmental studies in ecology of phytoplankton. Symbolae Botanicae Upsaliensis, 10(1), 1–149.


Rybakova, I. V., & Kopylov, A. I. (2017). Heterotrophic bacteria in epiphyton of higher aquatic plants in the Ivankovo Reservoir. Inland Water Biology, 10(2), 239–242.


Shcherbina, G. K. (2002). Struktura i funktsionirovaniye biotsenozov donnykh makrobespozvonochnykh verkhnevolzhskikh vodokhranilishch. In: Dinamika raznoobraziya gidrobiontov vo vnutrennikh vodoyemakh Rossii [Dynamics of the diversity of hydrobionts in the inland waters of Russia]. Izdatel'stvo Yaroslavskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Yaroslavl'. Pp. 121–142 (in Russian).


Sigareva, L. Y. (2012). Khlorofill v donnykh otlozheniyakh volzhskikh vodoyemov. KMK, Moscow (in Russian).


Sipkay, C., Kiss, K. T., Vadadi-Fülöp, C., & Hufnagel, L. (2009) Trend in research on the possible effects of climate concerning aquatic ecosystems with special emphasis on the modeling approach. Applied Ecology and Environmental Research, 7(2), 171–198.


Sommaruga, R. (1995). Microbial and classical food webs: A visit to a hypertrophic lake. FEMS Microbiology Ecology, 17(4), 257–270.


Steward, G. F., Fandino, L. B., Hollibaugh, J. T., Whitledge, T. E., & Azam, F. (2007). Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the Central Arctic. Deep Sea Research Part I Oceanographic Research Papers, 54(10), 1744–1757.


Stone, L., Berman, T., Bonner, R., Barry S., & Weeks, S. W. (1993). Lake Kinneret: A seasonal model for carbon flux through the planktonic biota. Limnology and Oceanography, 38(8), 1680–1695.


Straile, D. (1998). Biomass allocation and carbon flow in the pelagic food web of Lake Constance. Advances in Limnology, 53, 545–563.


Strickland, J. D. H. (1960). Measuring the production of marine phytoplankton. Fisheries Research Board of Canada. Bulletin 122. Ottawa, Canada.


Tijdens, M., Van de Waal, D. B., Slovackova, H., Hoogveld, H. L., & Gons, H. J. (2008). Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in shallow eutrophic lake. Freshwater Biology, 53(6), 1126–1141.


Turley, C. M., Newell, R. C., & Robins, D. B. (1986). Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Marine Ecology Progress Series, 33(1), 59–70.


Vadeboncoeur, Y., & Steinman, A. D. (2002). Periphyton function in lake ecosystems. The Scientific World Journal, 2, 1449–1468.


Wetzel, R. G. (1995). Death, detritus, and energy flow in aquatic ecosystems. Freshwater Biology, 33(1), 83–89.


Zhukova, A. A. (2005). Pervichnaya produktsiya planktona, epifitona, makrofitov i mikro-fitobentosa v litoral'nykh biotopakh oz. Naroch' [Primary production of plankton, epiphyton, macrophytes and microphytobenthos in the littoral biotopes of the Lake Naroch]. Vesnik Brestskaga Universiteta, Seryya Pryrodaznauchykh Navuk, 24, 79–84 (in Russian).

Published
2018-05-15
Section
Articles