Impact of cadmium and lead on Megaphyllum kievense (Diplopoda, Julidae) in a laboratory experiment

Keywords: heavy metals; technogenic pollution; litter decomposition; growth rate; body weight; litter microbiota


After accumulating in plants, lead and cadmium of technogenic origin concentrate in forest litter, thus inhibiting the speed of its microbiological decomposition and causing chronic intoxication of saprophage millipedes which feed on it. The 20-day laboratory experiment described in this article determined the toxic impact of lead and cadmium (at concentrations of 0.3, 3, 30, 300, 3,000 and 30,000 mg/kg of litter) on the body weight of Megaphyllum kievense (Lohmander, 1928) and microbiological decomposition of forest litter. The death rate of M. kievense increased from 10–20% to 40% at 3 and 30 g/kg of lead and to 100% at 30 g of cadmium per 1 kg of litter. Gain in body weight of M. kievense reliably decreased only at 3 g/kg of cadmium (0.71 to 0.20 mg/24-hours). Under the influence of lead, gain in body weight reliably decreased compared to the control already at 100 times smaller concentration (30 mg/kg of substrate – 0.74 to 0.10 mg/24-hours). Under the influence of both cadmium and lead, the decomposition of litter by microorganisms is slowed down only under the highest of the studied concentrations (30 g/kg). The results of the laboratory experiment showed high resistance of M. kievense to lead and cadmium, at levels significantly higher than natural concentrations of heavy metals in technogenically transformed ecosystems.


Anderson, R. L., Walbridge, C. T., & Fiandt, J. T. (1980). Survival and growth of Tanytarsus dissimilis (Chironomidae) exposed to copper, cadmium, zinc, and lead. Archives of Environmental Contamination and Toxicology, 9(3), 329–335.

Brygadyrenko, V. V., & Ivanyshin, V. М. (2014). Impact of ferric salt on body weight of Megaphyllum kievense (Diplopoda, Julidae) and litter granulometric composition in the laboratory experiment. Visnyk of Dnipropetrovsk University. Biology, Ecology, 22(1), 83–87.

Brygadyrenko, V., & Ivanyshyn, V. (2016). Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. Journal of Forest Science, 61(9), 369–376.

Cervera, A., Maymó, A. C., Sendra, M., Martínez-Pardo, R., & Garcerá, M. (2004). Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaeidae). Journal of Insect Physiology, 50(8), 737–749.

Chang-ying, N., Yond, J., Chao-liang, L., & Cui, H. (2002). Effects of cadmium on housefly: Influence on growth and development and metabolism during metamorphosis of housefly. Insect Science, 9(1), 27–33.

Dallinger, R. (1993). Strategies of metal detoxification in terrestrial invertebrates. In: Dallinger, R., Rainbow, P. S. (eds.). Ecotoxicology of metals in invertebrates. Lewis Publishers, Boca Raton. Pp. 245–289.

De Bisthoven, L. G. J., Timmermans, K. R., & Ollevier, F. (1992). The concentration of cadmium, lead, copper and zinc in Chironomus gr. thummi larvae (Diptera, Chironomidae) with deformedversus normal menta. Hydrobiologia, 239(3), 141–149.

Hensbergen, P. J., van Velzen, M. J. M., Adi Nugroho, R., Donker, M. H., & van Straalen, N. M. (2000). Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 125(1), 17–24.

Lagisz, M. (2008). Changes in morphology of the ground beetle Pterostichus oblongopunctatus F. (Coleoptera; Carabidae) from vicinities of a zinc and lead smelter. Environmental Toxicology and Chemistry, 27(8), 1744–1767.

Lauverjat, S., Ballan-Dufrancais, C., & Wegnez, M. (1989). Detoxification of cadmium. Ultrastructural study and electron-probe microanalysis of the midgut in a cadmium-resistant strain of Drosophila melanogaster. Biology of Metals, 2(2), 97–107.

Lindqvist, L. (1994). Metal uptake and accumulation during growth of Aglais urticae (Lepidoptera: Nymphalidae) larvae. Environmental Entomology, 23, 975–978.

Lindqvist, L., Block, M., & Tjalve, H. (1995). Distribution and excretion of Cd, Hg, methyl-Hg and Zn in the predatory beetle Pterostichus niger (Coleoptera, Carabidae). Environmental Toxicology and Chemistry, 14, 1195–1201.

Maroni, G., & Watson, D. (1985). Uptake and binding of cadmium, copper and zinc by Drosophila melanogaster larvae. Insect Biochemistry, 15(1), 55–63.

Martinez, E. A., Moore, B. C., Schaumloffel, J., & Dasgupta, N. (2001). Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments. Environmental Toxicology and Chemistry, 20, 2475–2481.

Martinez, E. A., Moore, B. C., Schaumloffel, J., & Dasgupta, N. (2004). Effects of exposure to a combination of zinc- and lead-spiked sediments on mouthpart development and growth in Chironomus tentans. Environmental Toxicology and Chemistry, 23(3), 662.

Martoja, R., Bouquegneau, J. M., & Verthe, C. (1983). Toxicological effects and storage of cadmium and mercury in an insect Locusta migratoria (Orthoptera). Journal of Invertebrate Pathology, 42(1), 17–32.

Maryanski, M., Kramarz, P., Laskowski, R., & Niklinska, M. (2002). Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food. Ecotoxicology, 11, 127–139.

McCahon, C. P., & Pascoe, D. (1991). Brief-exposure of first and fourth instar Chironomus riparius larvae to equivalent assumed doses of cadmium: Effects on adult emergence. Water, Air, and Soil Pollution, 60, 395–403.

Mirčić, D., Blagojević, D., Perić-Mataruga, V., Ilijin, L., Mrdaković, M., Vlahović, M., & Lazarević, J. (2012). Cadmium effects on the fitness-related traits and antioxidative defense of Lymantria dispar L. larvae. Environmental Science and Pollution Research, 20(1), 209–218.

Mircic, D., Jankovic-Tomanic, M., Nenadovic, V., Franeta, F., & Lazarevic, J. (2010). The effects of cadmium on the life history traits of Lymantria dispar L. Archives of Biological Sciences, 62(4), 1013–1020.

Nursita, A. I., Singh, B., & Lees, E. (2005). The effects of cadmium, copper, lead, and zinc on the growth and reproduction of Proisotoma minuta Tullberg (Collembola). Ecotoxicology and Environmental Safety, 60(3), 306–314.

Pedersen, S. A., Kristiansen, E., Andersen, R. A., & Zachariassen, K. E. (2007). Isolation and preliminary characterization of a Cd-binding protein from Tenebrio molitor (Coleoptera). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 145(3), 457–463.

Pedersen, S. A., Kristiansen, E., Andersen, R. A., & Zachariassen, K. E. (2008). Cadmium is deposited in the gut content of larvae of the beetle Tenebrio molitor and involves a Cd-binding protein of the low cysteine type. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 148(3), 217–222.

Posthuma, L., Hogervorst, R. F., & Van Straalen, N. M. (1992). Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L.) (Collembola). Archives of Environmental Contamination and Toxicology, 22(1), 146–156.

Sant’Ana, M. G., Moraes, R., & Bernardi, M. M. (2005). Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response. Environmental Research, 99(2), 273–277.

Schmidt, G. H., Ibrahim, N. M. M., & Abdallah, M. D. (1991). Toxicological studies on the long-term effects of heavy metals (Hg, Cd, Pb) in soil on the development of Aiolopus thalassinus (Fabr.) (Saltatoria: Acrididae). Science of The Total Environment, 107, 109–133.

Schmidt, G., Ibrahim, N. M., & Abdallah, M. (1992). Long-term effects of heavy metals in food on developmental stages of Aiolopus thalassinus (Saltatoria: Acrididae). Archives of Environmental Contamination and Toxicology, 23(3), 375–382.

Shulman, M. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecologica, 44(1), 28–37.

Spehar, R. L., Anderson, R. L., & Fiandt, J. T. (1978). Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environmental Pollution, 15(3), 195–208.

Valko, M., Morris, H., & Cronin, M. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.

Van Gestel, C. A. M., Dirven-van Breemen, E. M., & Baerselman, R. (1993). Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida). Science of The Total Environment, 134, 585–597.

Vlahović, M., Lazarević, J., Perić-Mataruga, V., Ilijin, L., & Mrdaković, M. (2009). Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Ecotoxicology and Environmental Safety, 72(4), 1148–1155.

Vlahović, M., Perić Mataruga, V., Ilijin, L., Mrdaković, M., Mirčić, D., Todorović, D., & Lazarević, J. (2011). Changes in activity of non-specific esterases in cadmium treated Lymantria dispar larvae. Ecotoxicology, 21(2), 370–378.

Wang, J., Ren, T., Han, Y., Zhao, Y., Liao, M., Wang, F., & Jiang, Z. (2015). The effects of dietary lead on growth, bioaccumulation and antioxidant capacity in sea cucumber, Apostichopus japonicus. Environmental Toxicology and Pharmacology, 40(2), 535–540.

Zygmunt, P. M. S., Maryański, M., & Laskowski, R. (2006). Body mass and caloric value of the ground beetle (Pterostichus oblongopunctatus) (Coleoptera, Carabidae) along a gradient of heavy metal pollution. Environmental Toxicology and Chemistry, 25(10), 2709–2714.