Features of ecological differentiation of halophytic, steppe and petrophytic vegetation in the valley of the Liman Kuyalnik (Odesa Oblast)

  • D. V. Dubyna M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine http://orcid.org/0000-0002-5110-7938
  • T. P. Dziuba M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine http://orcid.org/0000-0001-8621-0890
  • L. P. Vakarenko M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine http://orcid.org/0000-0003-2041-7017
  • A. A. Ennan Physical-Chemical Institute for Environment and Human Protection of Ministry of Education and Science and the National Academy of Sciences of Ukraine http://orcid.org/0000-0003-4578-7858
  • H. M. Shykhaleeva Physical-Chemical Institute for Environment and Human Protection of Ministry of Education and Science and the National Academy of Sciences of Ukraine http://orcid.org/0000-0002-1475-4415
  • H. M. Kiriushkina Physical-Chemical Institute for Environment and Human Protection of Ministry of Education and Science and the National Academy of Sciences of Ukraine http://orcid.org/0000-0003-4445-9879
Keywords: synphytoindication; DCA-ordination; Therosalicornietea; Festuco-Puccinellietea; Juncetea maritimi; Bolboschoenetea maritimi; Festuco-Brometea; Sedo-Scleranthetea.


Assessment of key environmental factors that influence vegetation distribution and formation of plant communities is one of the most important challenges in modern phytocenology. Nowadays, several bioindication systems are applied to determine ecological specificity of plant communities and to establish the leading factors for their environmental differentiation. The system most widely used in Europe, that of H. Ellenberg, contains a numerical score on 6 ecological factors. On the example of vegetation of the valley of the Liman Kuyalnik, Y. Didukh developed the synphytoindication method based on evaluation of phytocenoses with respect to 12 ecological factors: 7 edaphic factors and 5 climatic factors; the method determines a more accurate and complete presentation of the analysis. In the valley of the Liman Kuyalnik (Odesa Oblast) the largest area is covered with halophytic and steppe vegetation. Halophytic vegetation (Therosalicornietea, Festuco-Puccinellietea classes, Juncetea maritimi, Bolboschoenetea maritimi) predominated in the shoreline areas of the valley, whereas steppe (Festuco-Brometea) and petrophytic (Sedo-Scleranthetea) vegetation dominated on the slope sites. With the application of DCA-ordination and synphytoindication methods it was established that distribution of plant communities in the hyper-space of the environmental conditions was most strongly correlated with edaphic factors, whereas microclimatic (light intensity) and climatic (thermo-regime) conditions had somewhat less influence on their differentiation. Water regime and level of soil salinity served as key factors for syntaxa of halophytic vegetation; moisture variability and salt regime, as well as soil moisture and carbonate content were key factors for the steppe vegetation, and thermo-regime was the main factor for petrophytic-steppe and petrophytic vegetation. The "eco-spaces" of these groups largely overlap. Halophytic cenoses are characterized by quite wide ecological ranges by most ecological factors. Steppe communities show much less ecological diversity. In the valley of the liman, all the steppe communities were characterized by stenotopicity in relation to most ecological factors; these factors complexly determine the specificity and diversity of biotopes within the valley, which are unique and require protection and the taking of appropriate measures, depending on the changes in activity of one or another limiting factor. Nowadays, the valley of the Liman Kuyalnik is in a state of environmental disaster. The established relationships in ecological differentiation of plant communities will be applied to further monitoring of biodiversity state, preservation and possible restoration of vegetation types that were native for this unique territory.


Asif, N., Malik, M. F., & Chaudhry, F. N. (2018). A review of environmental pollution bioindicators. Pollution, 4(1), 111–118.

Bagrikova, N. A. (2018). Differentsiatsiya soobshchestv segetalnoy rastitelnosti Kryma na gradientakh faktorov sredy [Differentiation of segetal communities of Crimea on environmental factors gradients]. Science in the South of Russia, 14(2), 73–87 (in Russian).

Baranovski, B., Khromykh, N., Karmyzova, L., Ivanko, I., & Lykholat, Y. (2016). Anyalysis of the alien flora of Dnipropetrovsk province. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 419–429.

Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., Getz, W. M., Harte, J., Hastings, A., Marquet, P. A., Martinez, N. D., Mooers, A., Roopnarine, P., Vermeij, G., Williams, J. W., Gillespie, R., Kitzes, J., Marshall, C., Matzke, N., Mindell, D. P., Revilla, E., & Smith, A. B. (2012). Approaching a state shift in Earth's biosphere. Nature, 486(7401), 52–58.

Burger, J. (2006). Bioindicators: Types, development, and use in ecological assessment and research. Environmental Bioindicators, 1(1), 22–39.

Carpenter, W., & Goodenough, A. (2014). How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities. Community Ecology, 15(1), 1–11.

Ceschin, S., Zuccarello, V., & Caneva, G. (2010). Role of macrophyte communities as bioindicators of water quality: Application on the Tiber River basin (Italy). Plant Biosystems, 144(3), 528–536.

Cheng, Y., & Nakamura, T. (2007). Phytosociological study of steppe vegetation in east Kazakhstan. Grassland Science, 53(3), 172–180.

Chusova, O. O. (2018). Biotopy baseynu richky Krasna (Luhanska obl., Ukraina) ta yikhniy analiz [Biotopes of the Krasna River basin (Luhansk Region, Ukraine) and their analysis]. Ukrainian Botanical Journal, 75(3), 260–273 (in Ukrainian).

Chytrý, M. (Ed.) (2007). Vegetace České republiky. 1. Travinná a keřičková ve­getace [Vegetation of the Czech Republic. 1. Grassland and Heathland Vegetation]. Academia, Praha (in Czech).

Chytrý, M. (Ed.) (2009). Vegetace České republiky. 2. Ruderální, plevelová, skalní a suťová vegetace [Vegetation of the Czech Republic. 2. Ruderal, weed, rock and scree vegetation]. Academia, Praha (in Czech).

Chytrý, M. (Ed.) (2011). Vegetace České republiky. 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic. 3. Aquatic and Wetland Vegetation]. Academia, Praha (in Czech).

Chytrý, M. (Ed.) (2013). Vegetace České republiky. 4. Lesní a křovinná vegetace [Vegetation of the Czech Republic. 4. Forest and Scrub Vegetation]. Academia, Praha (in Czech).

Czortek, P., Eycott, A., Grytnes, J. A., Delimat, A., Kapfer, J., & Jaroszewicz, B. (2018). Effects of grazing abandonment and climate change on mountain summits flora: A case study in the Tatra Mts. Plant Ecology, 219, 261–276.

Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.

Didukh, Y. P. (2012). Osnovy bioindykatsii [Fundamentals of bioindication]. Naukova Dumka, Kyiv (in Ukrainian).

Didukh, Y. P., & Kuzemko, A. A. (2014). Fitoindykatsiyna otsinka syntaksoniv klasu Molinio-Arrhenatheretea Polissya ta Lisostepu Ukrainy [Phytoindication assess­ment of syntaxa, class Molinio-Arrhenatheretea, in Polissya and Forest Steppe zones of Ukraine]. Ukrainian Botanical Journal, 71(2), 140–147 (in Russian).

Didukh, Y. P., Chusova, O. O., Olshevska, I. A., & Polishchuk, Y. V. (2015). River valleys as the object of ecological and geobotanical research. Ukrainian Botanical Journal, 72(5), 415–430.

Dubyna, D. V., Dziuba, T. P., Vakarenko, L. P., Ennan, A. A., Shykhaleeva, H. M. (2018c). Klasyfikatsiya derevno-chaharnykovoi roslynnosti dolyny Kuyalny­tskoho lymanu [Classification of woody and shrub vegetation of the Kuyalnitsky estuary valley]. In: Klasyfikatsiya roslynnosti ta biotopiv Ukrainy. Materialy tretoi naukovo-teoretychnoi konferentsii (Kyiv, 19–21 April 2018), Kyiv, 161–169 (in Ukrainian).

Dubyna, D. V., Ennan, A. A., Dziuba, T. P., Vakarenko, L. P., & Shykhaleeva, H. M. (2017a). Syntaksonomiya halofitnoi roslynnosti Kuyalnytskoho lymanu [Synta­xonomy of halophytic vegetation of Kuyalnyk Estuary]. Ukrainian Botanical Journal, 74(6), 562–573 (in Ukrainian).

Dubyna, D. V., Ennan, A. A., Dziuba, T. P., Vakarenko, L. P., Kiriushkyna, H. M., & Shykhaleeva, H. M. (2018a). Syntaksonomiya ruderalnoi roslynnosti Kuyalnytskoho lymanu [Syntaxonomy of ruderal vegetation of the Kuyalnyk Liman]. Chornomorski Botanical Journal, 14(3), 240–268 (in Ukrainian).

Dubyna, D. V., Ennan, A. A., Vakarenko, L. P., Dzyuba, T. P., & Shykhaleeva, H. M. (2017b). Osoblyvosti terytorialnoi ta ekoloho-tsenotychnoi dyferentsiatsii roslynnosti dolyny Kuyalnytskoho lymanu (Odeska obl.) [The territorial and ecologo-coenotic differentiation of the vegetation in Kuyalnytskyi estuary valley (Odessa region)]. Chornomorski Botanical Journal, 13(4), 428–443 (in Ukrainian).

Dubyna, D. V., Ennan, A. A.-A., Dziuba, T. P., Vakarenko, L. P., Shykhaleyeva, G. M., & Kiryushkina, A. M. (2018b). Proektovanyi Natsionalnyi pryrodnyi park "Kuyalnytskyi" yak osnova optymizatsii dovkillya ta stiykoho rozvytku rehionu [Projected Kuialnytsky National Nature Park as a basis for optimization of the environment and sustainable development of the region]. Ukrai­nian Botanical Journal, 75(5), 457–469 (in Ukrainian).

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulissen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. Scripta Geobota­nica, 18, 1–248.

Ennan, A., Dubyna, D., Tsarenko, P., Vakarenko, L., Dzyuba, T., & Shykhalyeyeva, H. (2018). How to restore the ecosystem of Kuyalnytskyi estuary? Visnyk of the National Academy of Sciences of Ukraine, 6, 93–109 (in Ukrainian).

Ermakov, N. B., Larionov, A. V., Polyakova, M. A., & Plugatar, Y. V. (2017). Ecological interpretation of higher units of steppe vegetation in the mountains of Southern Middle Siberia by quantitative ordination. Biology Bulletin Reviews, 7(3), 229–237.

Evangelista, A., Frate, L., Carranza, M. L., Attorre, F., Pelino, G., & Stanisci, A. (2016). Changes in composition, ecology and structure of high-mountain vegetation: A re-visitation study over 42 years. AoB Plants, 8, plw004.

Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygady­renko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.

Hedwall, P.-O., Gustafsson, L., Brunet, J., Lindbladh, M., Axelsson, A.-L., & Strengbom, J. (2019). Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecological Applications, 29(4), e01874.

Hill, M. O. (1979). Twinspan – a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and the attri­butes. Ithaca, New York City.

Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An imp­roved ordination technique. Vegetatio, 42, 47–58.

Ivanova, N. S., & Zolotova, E. S. (2015). Ekologicheskoe prostranstvo uslovno-korennykh tipov lesa v gorakh Srednego Urala [Ecological space of forest type in the mountains of Middle Urals]. The Modern Problems of Science and Education, 3, 19372 (in Russian).

Jarvis, S., Rowe, E., Henrys, P., Smart, S. M., Jones, L., & Garbutt, A. (2016). Empirical realised niche models for British coastal plant species. Journal of Coastal Conservation, 20(2), 107–116.

Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., Fernandez, M., Geller, G. N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F. E., Pereira, H. M., Regan, E. C., Schmeller, D. S., & Turak, E. (2019). Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 3, 539–551.

Kenar, N. (2017). Phytosociological investigations of steppe and steppe forest ve­getation in the south-east part of Central Anatolia of Turkey. Journal of the Faculty of Forestry Istanbul University, 67(2), 210–226.

Klimo, E., Hybler, V., Lorencová, H., & Štykar, J. (2011). The heterogeneity of soil properties and biodiversity in floodplain forests of southern Moravia in natural conditions and under anthropogenic impacts. Ekológia (Bratislava), 30(3), 296–314.

LaPaix, R., Freedman, B., & Patriquin, D. (2009). Ground vegetation as an indicator of ecological integrity. Environmental Reviews, 17, 249–265.

Lashchinskiy, N. N., Tishchenko, M. P., & Korolyuk, A. Y. (2019). Kolichestven­nyi analiz lokalnykh tsenoflor stepnoy zony Severnogo Kazakhstana [Quantitative analysis of local coenofloras in the steppe zone of Northern Kazakhstan]. Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 45, 69–90 (in Russian).

Li, W., Cui, L., Sun, B., Zhao, X., Gao, C., Zhang, Y., Zhang, M., Pan, X., Lei, Y., & Ma, W. (2017). Distribution patterns of plant communities and their associations with environmental soil factors on the eastern shore of Lake Taihu, China. Ecosystem Health and Sustainability, 3(9), 1–11.

Lykholat, Y. V., Khromykh, N. O., Pirko, Y. V., Alexeyeva, A. A., Pastukhova, N. L., & Blume, Y. B. (2018a). Epicuticular wax composition of leaves of Tilia L. trees as a marker of adaptation to the climatic conditions of the steppe Dnieper. Cytology and Genetics, 52(5), 323–330.

Lykholat, Y., Khromykh, N., Didur, O., Alexeyeva, A., Lykholat, T., & Davydov, V. (2018b). Modeling the invasiveness of Ulmus pumila in urban ecosystems under climate change. Regulatory Mechanisms in Biosystems, 9(2), 161–166.

Lysenko, T. M. (2016). Rastitelnost zasolennykh pochv Povolzhya v predelakh lesostepnoy i stepnoy zon [Vegetation of saline soils of the Volga region in the forest-steppe and steppe zones]. Tovarishchestvo Nauchnykh Izdaniy KMK, Moscow (in Russian).

Parmar, T. K., Rawtani, D., & Agrawal, Y. K. (2016). Bioindicators: The natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110–118.

Pinto, P., Dupouey, J.-L., Hervé, J.-C., Legay, M., Wurpillot, S., Montpied, P., & Gégout, J.-C. (2016). Optimizing the bioindication of forest soil acidity, nitro­gen and mineral nutrition using plant species. Ecological Indicators, 71, 359–367.

Roleček, J., Tichý, L., Zelený, D., & Chytrý, M. (2009). Modified Twinspan classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 20, 596–602.

Rowe, E., Wamelink, G. W., Smart, M. S., Butler, A., Henrys, P., van Dobben, F. H., Reinds, J. G., Evans, D. C., Kros, J., & Vries, W. (2015). Field survey based models for exploring nitrogen and acidity effects on plant species diversity and assessing long-term critical loads. In: de Vries, W., Hettelingh, J.-P., & Posch, M. (Eds.). Effects and empirical critical loads of nitrogen for ecoregions of the United States. Springer Verlag. Pp. 297–326.

Szymura, T. H., Szymura, M., & Macioł, A. (2014). Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators, 46, 495–503.

Tichy, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451–453.

Tölgyesi, C., Bátori, Z., & Erdős, L. (2014). Using statistical tests on relative eco­logical indicator values to compare vegetation units – Different approaches and weighting methods. Ecological Indicators, 36, 441–446.

Valjavec, M. B., Ribeiro, D., & Čarni, A. (2017). Vegetation as the bioindicator of human induced degradation in karst landscape: Case study of waste filled dolines. Acta Carsologica, 46(1), 95–110.

Venables, W. N., & Smith, D. M. (2009). An introduction to R. 2nd ed. Network Theory Ltd.

Vynokurov, D. S. (2014). Syntaxonomy of xerothermic vegetation of the river Ingul valley (class Festuco-Brometea). Part 2. Meadow, shrub and true steppe vegetation. Ukrainian Botanical Journal, 71(5), 537–548.