Halotolerant strain of Chlorococcum oleofaciens from the Lake Elton Biosphere Reserve

  • M. E. Ignatenko Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences http://orcid.org/0000-0002-4451-7816
  • T. N. Yatsenko-Stepanova Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences http://orcid.org/0000-0001-6168-9516
  • Y. A. Khlopko Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences http://orcid.org/0000-0002-2880-3214
Keywords: Chlorococcum morphology; halotolerance; 18S rDNA.


Chlorococcum oleofaciens is one of the most studied representatives of the Chlorococcum genus, both on the ultrastructural and molecular levels. This alga is very interesting due to its ability to hypersynthetize saturated and unsaturated fatty acids and the possibility of using it as a promising object for biofuel production. This research is devoted to the study of the halotolerant strain of Ch. oleofaciens Ch-1 extracted from the water of the Khara River (Lake Elton Biosphere Reserve, Russia, a UNESCO World Heritage site), mineralization of 14‰. The strain Ch. oleofaciens Ch-1 was studied at the morphological level (light microscopy), as well as using molecular genetics methods (18S rDNA). The objectives of the study included establishing the range of halotolerance of the allocated strain of Ch. oleofaciens as a whole, revealing borders of level of mineralization that are optimum for algae growth, and also tracing features of its morphology and cycle of development in the conditions of various salinity. In the course of the studies performed it was established that the extracted strain of Ch. oleofaciens Ch-1 differed from the typical one by greater variability of some morphological features and had a wide ecological valence: the range of its halotolerance was 0–60‰. The maximum values of quantitative development of Ch. oleofaciens Ch-1 were registered at mineralization of 0–14‰. It is shown that with increasing salinity in the development cycle of the strain, the duration of the adaptation phase increases, the exponential phase decreases, small celled forms are replaced by large celled forms and reproduction features are noted. The obtained results can be used for selection of optimal conditions for cultivation of the halotolerant strain of Ch. oleofaciens for biotechnological purposes.


Abomohra, A. E.-F., Wagner, M., El-Sheekh, M., & Hanelt, D. (2012). Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: Screening studies towards biodiesel production. Journal of Applied Phyco­logy, 25(4), 931–936.

Andreyeva, V. М. (1998). Pochvennye i aerofil’nye zelenye vodorosli (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) [Terrestrial and aero­philic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales)]. Nauka, Saint-Petersburg (in Russian).

Archibald, P. A., & Bold, H. C. (1970). The genus Chlorococcum Meneghini. Phycological Studies, 11, 1–115.

Beevi, U. S., & Sukumaran, R. K. (2015). Cultivation of the freshwater microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. Journal of Applied Phycology, 27, 141–147.

Burkova, T. N. (2012). Taxonomicheskii sostav algoflory plankton vysokomine­ralizovannoi reki Hara [The taxonomic composition of the algal flora of plankton in the highly mineralized Hara river]. Samarskaya Luka: Problems of Regional and Global Ecology, 21(3), 25–35 (in Russian).

Davidovich, O. I., Davidovich, N. A., Podunay, Y. A., Shorenko, K. I., & Witkow­ski, A. (2016). Vliyanie solenosti sredy na vegetativnyi rost i polovoe vosproizvedenie vodoroslei iz roda Ardissonea de Notaris (Bacillariophyta) [Effect of salinity on vegetative growth and sexual reproduction of algae from the genus Ardissonea de Notaris (Bacillariophyta)]. Russian Journal of Plant Physiology, 63(6), 776–782 (in Russian).

Del Río, E., Armendáriz, A., García-Gómez, E., García-González, M., & Guerrero, M. G. (2015). Continuous culture methodology for the screening of micro­algae for oil. Journal of Biotechnology, 195, 103–107

Del Río, E., García-Gómez, E., Moreno, J., Guerrero, M. G., & García-González, M. (2017). Microalgae for oil. Assessment of fatty acid productivity in continuous culture by two high-yield strains, Chlorococcum oleofaciens and Pseudokirchneriella subcapitata. Algal Research, 23, 37–42.

Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65, 1259–1270.

Feng, J., Guo, Y., Zhang, X., Wang, G., Lv, J., Liu, Q., & Xie, S. (2016). Identification and characterization of a symbiotic alga from soil bryophyte for lipid profiles. Biology Open, 5, 1317–1323.

Finenko, Z. Z., & Lanskaya, L. A. (1971). Rost i skorost’ deleniya vodoroslei v limitirovannyh obiemah vody. Ekologicheskaya fiziologia morskih planktonnyh vodoroslei (v ysloviah kyl’tyr) [Growth and division rate of algae in limited water volumes. Ecological physiology of marine planktonic algae (in terms of cultures)]. Naukova Dumka, Kiev (in Russian).

Guiry, M. D., & Guiry, G. M. (2019). AlgaeBase. Worldwide electronic publication. National University of Ireland, Galway.

Kanapatskiy, T. A., Samylina, O. S., Plotnikov, A. O., Selivanova, E. A., Khlopko, Y. A., Kuznetsova, A. I., Rusanov, I. I., Zakharova, E. E., & Pimenov, N. V. (2018). Mikrobnye prosessy produkcii i destrukcii organicheskogo vechestva v solonovodnyh rekah Priel’toniya (Volgogradskaya oblast) [Microbial pro­cesses of organic matter production and decomposition in saline rivers of the Lake Elton Area (Volgograd Oblast, Russia)]. Microbiology, 87(1), 56–69 (in Russian).

Kawasaki, Y., Nakada, T., & Tomita, M. (2015). Taxonomic revision of oil-pro­ducing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. Journal of Phycology, 51, 1000–1016.

Kirrolia, A., Bishnoi, N. R., & Singh, R. (2012). Effect of shaking, incubation temperature, salinity and media composition on growth traits of green microalgae Chlorococcum sp. Journal of Algal Biomass Utilization, 3(3), 46–53.

Klochkova, T. A., Kang, S.-H., Cho, G. Y., Pueschel, C. M., West, J. A., & Kim, G. H. (2006). Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia, 45(3), 349–358.

Lopatovskaya, O. G., Maksimova, E. N., & Khadeeva, E. R. (2017). Zasolenye pochvy ostrova Ol’hon i vidovoe raznoobrazie pochvennyh vodoroslei [Saline soils and diversity of soil algae of Ol’khon island at Baikal Lake]. News of Irkutsk State University, 20, 73–88 (in Russian).

Maltsev, Y. I., & Konovalenko, T. V. (2017). New finding of green algae with potential for algal biotechnology, Chlorococcum oleofaciens and its molecular investigation. Regulatory Mechanisms in Biosystems, 8(4), 532–539.

Markina, Z. V., & Aizdaicher, N. A. (2010). Vliyanie snizhenya solenosti vody na rost i nekotorye biohimicheskie pokazateli Chaetoceros socialis f. radians (F. Schütt) Proschk.-Lavr. (Bacillariophyta) [Desalination influence on the growth and certain biochemical characteristics of the Chaetoceros socialis f. radians (F. Schütt) Proschk.-Lavr. (Bacillariophyta)]. Algologia, 20(4), 402–412 (in Russian).

Mikhailyuk, T., Vinogradova, O., Glaser, K., Demchenko, E., & Karsten, U. (2018). Raznoobrazie nazemnyh vodoroslei mysa Kazantip (Krym, Ukraina) i nekotorye voprosy ih filogenii i ekologii [Diversity of terrestrial algae of Cape Kazantip (the Sea of Azov, Ukraine) and some remarks on their phylogeny and ecology]. Аlgologia, 28(4), 363—386 (in Russian).

Novis, P. M., Aislabie, J., Turner, S., & McLeod, M. (2015). Chlorophyta, Xanthophyceae and Cyanobacteria in Wright Valley, Antarctica. Antarctic Science, 27(5), 439–454.

Rai, U. N., Singh, N. K., Upadhyay, A. K., & Verma, S. (2013). Chromate tole­rance and accumulation in Chlorella vulgaris L.: Role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresource Technology, 136, 604–609.

Singh, R., Upadhyay, A. K., Chandra, P., & Singh, D. P. (2018). Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresource Technology, 270, 489–497.

Temraleeva, A. D., & Moslalenko, S. V. (2019). Ispol’zovanie dannyh morfologii i molekylyarnoi sistematiki dlya identifikacii zelenyh microvodoroslei roda Chlorococcum i nekotoryh blizkorodstvennyh taksonov [Application of mor­phological and molecular systematic for identification of green microalgae of the genus Chlorococcum and some closely related taxa]. Microbiology, 88(1), 32–44 (in Russian).

Temraleeva, A. D., Moskalenko, S. V., & Bachura, Y. M. (2017). Morfologia, ekologia i 18S rRNK-filogenia zelenyh microvodoroslei poryadka Protosiphonales (Chlorophyceae, Chlorophyta) [Morphology, ecology, and 18S rDNA phylogeny of the green microalgal order Protosiphonales (Chlorophyceae, Chlorophyta)]. Microbiology, 86(2), 159–169 (in Russian).

Trainor, F. R., & Bold, H. C. (1953). Three new unicellular Chlorophyceae from soil. American Journal of Botany, 40, 758–767.

Zhila, N. O., Kalacheva, G. S., & Volova, T. G. (2011). Effect of salinity on the bio­chemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. Journal of Applied Phycology, 23(1), 47–52.