Coenomorphs as phytometers of biotopes


  • N. N. Nazarenko Chelyabinsk State Pedagogical University
Keywords: ecological-coenotical groups, discriminant analysis, habitats

Abstract

The article describes the A.L. Belgard system of vascular plant species coenomorphs as indicators of biotopes by using standardized Y.P. Didukh phytometer scales for 12 environmental factors. The classification and ordination of coenomorphs in the phytometer space was performed by using algorithms of discriminant analysis. The analysis is based on 2,186 species of the vascular plant flora of Ukraine. The classification accuracy was around 80% and above, the least homogenous was the petrophyte coenomorph. The validity of identification of ruderal coenomorphs was proved as an indicator of biotopes with increased content of soil nitrogen. Analysis of the a posteriori probability of species attribution to a coenomorph supports the validity of distinguishing transitional coenomorphs. Their number is small and each group contains a small number of species. The principal factors of classifying species by coenomorph are (in descending order of significance): minimum soil moisture, minimum light (shade), impoverishment of salts in the soil solution, high porosity of soil and impoverishment of carbonates of calcium in the soil and maximum values for radiation balance. The analysis of the distribution of coenomorphs in the space of the square of Mahalanobis distances and the ordination in the discriminant functions axis has determined the ranking of coenomorph of biotope and coenotic substitution: soil moisture (first discriminant function), radiation balance and shade (second discriminant function), salt regime and soil aeration (third discriminant function). For the vegetation of Ukraine this ordination of coenomorphs corresponds to the zonal factors of the distribution of biotopes and their limiting factors and the factors determining A.L. Belgard’s typology of natural and artificial forests: soil moisture, salinity of the soil solution, light conditions. The coenomorph optima for the principal factors have been defined in phytometer scales. This allows coenomorphs to be used as biotope phytometers and provides a preliminary assessment of those species whose place in the scales has not yet been determined. Analysis of posterior probabilities enabled us to determine the transitional coenomorphs, which are typical for ecotones between zonal and intrazonal vegetational ecosystems of Ukraine.

References

Avetov, N.A., Sopova, E.O., Golovleva, Y.A., Kiryushin, A.V., Krasilnikov, P.V., 2014. Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos’vinsk Up-land (Western Siberia). Eurasian Soil Sci. 47(11), 1077–1085.
Belgard, A.L., 1950. Lesnaja rastitel’nost’ jugo-vostoka USSR [Forest vegetation of the South-East of the USSR]. Kiev State University, Kiev (in Russian).
Belgard, A.L., 1971. Stepnoe lesovedenie [Steppe forest science]. Lesnaya Promyshlennost’, Moscow (in Russian).
Brygadyrenko, V.V., 2003. Ispol'zovanie topologicheskih spektrov v zoologicheskoj diagnostike pochv na primere semejstva zhuzhelic (Coleoptera, Carabidae) [Using topological spectrums in zoological diagnostics of soils with the family Carabidae (Coleoptera) as an example]. Ecology and Noospherology 13(1), 119–130 (in Russian).
Brygadyrenko, V.V., 2006. Vozmozhnosti ispol'zovaniya napochvennyh bespozvonochnyh dlya indikacii gradaciy uvlazhneniya edafotopa v lesnyh ekosistemah [The possibility to use soil invertebrates to indicate soil moisture gradations in the forest ecosystems]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 14(1), 21–26 (in Russian).
Brygadyrenko, V.V., 2014. Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecol. 41(1), 8–16.
Cachovanová, L., Hájek, M., Fajmonová, Z., Marrs, R., 2012. Species richness, community specialization and soil-vegetation relationships of managed grasslands in a geologically heterogeneous landscape. Folia Geobotanica 47(4). 349–371. >> doi:10.1007/s12224-012-9131-3
Collins, S.L., Glenn, S.M., 1990. A hierarchical analysis of species’ abundance patterns in grassland vegetation. Am. Nat. 135(5), 633–648.
Collins, S.L., Glenn, S.M., Roberts, D.W., 1993. The hierarchical continuum concept. J. Veg. Sci. 4(2), 149–156. >> .doi:10.2307/3236099
Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.
Faly, L.I., Brygadyrenko, V.V., 2014. Patterns in the horizontal structure of litter invertebrate communities in windbreak plantations in the steppe zone of the Ukraine. J. Plant Prot. Res. 54(4), 414–420.
Fischer, H.S., Michler, B., Ewald, J., 2014. Environmental, spatial and structural components in the composition of mountain forest in the Bavarian Alps. Folia Geobotanica 49(3), 361–384. >> doi:10.1007/s12224-013-9185-x
Hardle, W., Simar, L., 2007. Applied multivariate statistical analysis. Springer, Berlin-Heidelberg. >> doi:10.1007/978-3-662-45171-7
Häring, T., Reger, B., Ewald, J., Hothorn, T., Schröder, B., 2014. Regionalizing indicator values for soil reaction in the Bavarian Alps – from averages to multivariate spectra. Folia Geobotanica 49(3), 385–405.
Kleshcheva, E.A., 2007. The use of ecological scales for indication of the current state of forest communities. Russ. J. Ecol. 38(2), 94–100. >> doi:10.1134/S1067413607020051
Kleshcheva, E.A., 2010. Indicator properties of Southern Siberian plants with respect to soil moisture. Russ. J. Ecol. 41(6), 480–485. >> doi:10.1134/S1067413610060044
Marinšek, A., Čarni, A., Šilc, U., Manthey, M., 2015. What makes a plant species specialist in mixed broad-leaved deciduous forests? Plant Ecology 216(10), 1469–1479.
Martinez, K.A., Gibson, D.J., Middleton, B.A., 2015. Core-satellite species hypothesis and native versus exotic species in secondary succession. Plant Ecology 216(3), 419–427. >> doi:10.1007/s11258-015-0446-z
Matveev, N.M., 2012. Methodology of using the floristic structure of afforestation for characterization of biotopes in the steppe zone. Biology Bulletin 39(10), 794–799. >> doi:10.1134/S1062359012100020
McLachlan, G.J., 2004. Discriminant analysis and statistical pattern recognition. Wiley-Interscience, Hoboken. >> doi:10.1002/0471725293
Mellert, K.H., Ewald, J., 2014. Regionalizing nutrient values of vegetation to assess site fertility of mountain forests in the Bavarian Alps. Folia Geobotanica 49(3), 407–423. >> doi:10.1007/s12224-013-9167-z
Nazarenko, N.N., 2013. Jekologo-cenoticheskie gruppy ili jekomorfy A.L. Bel’garda – sravnitel’nyj analiz na primere listvennyh lesov severnoj stepi Ukrainy [Ecological-coenotical groups or A.L. Belgard’s ectomorphs – comparative analysis by the example of northern Steppe of Ukraine deciduous forests]. Tambov University Review. Ser. Natural and Technical Sciences 18, 3203–3207 (in Russian).
Nazarenko, N.N., Didur, O.A., 2012. Cenomorfy estestvennyh listvennyh lesov severnoj stepi Ukrainy [Coenomorphs of natural deciduous foretrs in northern Steppe of Ukraine]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 20(1), 66–77 (in Russian).
Nazarenko, N.N., Stadnik, A.P., 2011. Lystjanі lіsy pіvnіchno-stepovogo Prydnіprov’ja (ekologіja, typologіja fіtorіznomanіttja) [Broadleaf forests of northern-steppe region of Dnieper river basin (ecology, typology, plant diversity)]. FOP Maydachenko, Korsun-Shevchenkivskyi (in Ukrainian).
Priputina, I.V., Zubkova, E.V., Komarov, A.S., 2015. Retro-spective assessment of the dynamics of nitrogen availability in pine forests of the near-Moscow region based on the data of phytoindication. Contemp. Probl. Ecol. 8(7), 916–924.
Šamonil, P., Vrška, T., 2007. Trends and cyclical changes in natural firbeech forests at the north-western edge of the Carpathians. Folia Geobotanica 42(4), 337–361.
Šamonil, P., Vrška, T., 2008. Long-term vegetation dynamics in the Šumava Mts. natural spruce-firbeech forests. Plant Ecology 196(2), 197–214.
Shirokikh, P.S., Martynenko, V.B., 2009. Comparison of different ecological scales with respect to efficiency in assessing ecological conditions in forests of the Southern Ural region. Russ. J. Ecol. 40(7), 457–465. >> doi:10.1134/S1067413609070017
Smirnov, V.E., Khanina, L.G., Bobrovskiy, M.V., 2006. Obosnovanie sistemy jekologo-cenoticheskih grupp vidov rastenij lesnoj zony Evropejskoj Rossii na osnove jekologicheskih shkal, geobotanicheskih opisanij i statisticheskogo analiza [Validation of the ecological-coenotical groups of vascular plant species for European Russian forests on the basis of ecological indicator values, vegetation description and statistical analysis]. Bull. Mosc. Soc. Natur. Biol. Ser. 111(2), 36–47 (in Russian).
Smirnova, O.V. (ed.), 2004. Vostochnoevropejskie lesa: Istorija v golocene i sovremennost’ [Eastern European forests: History in Holocene and contemporaneity]. Nauka, Moscow (in Russian).
Solomakha, I.V., 2015. Sozologichna harakterystyka lisovoi' ta chagarnykovoi' roslynnosti Pivnichnogo Prychornomor’ja [Sozological characteristic of vegetation of forests and shrubs of the Northern Black Sea region]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 5(3), 130–139 (in Ukrainian).
Tarasov, V.V., 2012. Flora Dnipropetrovs’koyi і Zaporіz’koyi oblastej [Flora of Dnepropetrovsk and Zaporozhye regions]. Lira, Dnepropetrovsk (in Ukrainian).
Terentiev, P.V., 1959. Metod korreljacionnyh plejad [Method of correlation constellations]. Vestnik of Leningrad State University 9, 137–141 (in Russian).
Tsyganov, D.N., 1983. Fitoindikacija jekologicheskih faktorov v podzone hvojno-shirokolistvennyh lesov [Phytoindication of ecological factors in the subzone of coniferous-deciduous forests]. Nauka, Moscow (in Russian).
Vorobyov, E.O., Olijnyk, M.P., Solomakha, I.V., 2015. Syntaksonomija uhrupovanʹ dribnolystjanych lisiv na zarostajučych perelohach [Syntaxonomy of small leaf forests groups on the overgrowing fallows]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 5(2), 54–63 (in Ukrainian).
Published
2016-01-28
Section
Articles