Health assessment of hydro-ecosystems based on homeostasis indicators of fish: Review of approaches

  • N. A. Klimenko National University of Water Management and Nature Resources Use
  • Y. V. Pylypenko Kherson State Agricultural University
  • O. O. Biedunkova National University of Water Management and Nature Resources Use
Keywords: pollution, growth variability, nuclear violations, fluctuating asymmetry


This paper reviews scientific literature concerning the possibility of using aspects of physiological responses of fish to environmental stressors and their indicators to assess vulnerability (‘health’) of hydro-ecosystems of various types. Based on the available information, the authors have found that most of these methods are quite complex, they require a researcher to have specialized skills, involve considerable time and costs, and therefore are not widely used in research on natural water bodies. These factors allowed the author to determine the aim of the paper: the analysis of the most representative and relatively simple methods of health assessment of hydro-ecosystems by using fish as biological indicators. Some of the known concepts are then discussed, demonstrating the possibility of describing and monitoring changes in hydro-ecosystems according to morphometric parameters and fish growth variability. The paper indicates that such approaches can be justified and illustrative only when the ecosystem is assessed in clearly defined local terms. The review of literature on the influence of different biotic and abiotic factors and their mutagenic action on fish suggests that the micronucleus (MN) test in fish erythrocytes is one of the most important and relatively simple assessment methods. Our research emphasizes that there is a need to pay attention in the assessment process both to the measurement units used in the presentation of research results and to their interpretation regarding the level of spontaneous mutations among fish, which differs according to various sources. The research suggests that such complications can be avoided by clarifying the levels of ontogenetic ‘noise’ for hydro-ecosystems of specific geographic zones. Taking into consideration the existing generalization of scientific facts about significant destabilization in the development of organisms when water is polluted even at low levels, the paper focuses on the opportunity to assess health of hydro-ecosystems using the fluctuating asymmetry index (FA). This study indicates that such assessments have the benefit of close correlation between the parameters of fish development stability and levels of water pollution. However there is an obvious risk of obtaining serious measurement errors in determining the level of FA. Based on the foregoing, this paper uses the registration of changes in fish homeostasis in order to expand the understanding of both the possibility of assessing the effects of combined ratings of water pollution and the background conditions in which harmful elements and compounds act. The authors substantiate the feasibility of combining several relatively simple and descriptive assessment methods and conclude that there is a need to elaborate criteria for the development of health of hydro-ecosystems within specific geographic zones.


Akhmad, A., 1999. Vplyv toksykantiv (Cr6+, Ni2+, Pb2+) na bioproduktsiyni parametry molodi ryb [The impact of toxicants (Cr6+, Ni2+, Pb2+) on young fish bioproduktsiyni options]. Instytut Rybnoho Hospodarstva, Kyiv (in Ukrainian).

Albalat, A., Potrykus, J., Pempkowiak, J., Porte, C., 2002. Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47, 165–171.

Anbumani, S., Mary, N., 2012. Mohankumar Gamma radiation induced micronuclei and erythrocyte cellular abnormalities in the fish Catla catla. Aquat. Toxicol. 122–123, 125–132.

Arhipchuk, V.V., Garanko, N.N., 2015. Using the nucleolar biomarker and the micronucleus test on in vivo fish fin cells. Ecotox. Environ. Safe. 62(1), 42–52.

Attrill, M.J, Depledge, M.H., 1997. Community and population indicators of ecosystem health: Targeting links between levels of biological organization. Aquat. Toxicol. 38, 183–197.

Baranov, V.J., 2003. Issledovanie populjacij ryb v uslovijah vodnyh jekosistem s razlichnoj stepen’ju antropogennoj nagruzki [The study of fish populations in the conditions of aquatic ecosystems with varying degrees of anthropogenic load]. Problemy Global’noj i Regional’noj Jekologii 7, 6–9 (in Russian).

Beasley, A., Bonisoli-Alquati, A., Mousseau, T., 2013. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis. Ecol. Indic. 30, 218–226.

Belova, N.V., Emel’janova, N.G., Makeeva, A.P., 2009. Unikal’nyj sluchaj pojavlenija karlikovih osobej belogo tovstolobika Hypophtalmichthis molitrix v vodoeme-ohladitele Chernobyl’skoj AJeS [A unique case of occurrence of dwarf species silver carp Hypophthalmichthys molitrix in the cooling pond of the Chernobyl Nuclear Power Plant]. Voprosy Ihtiologii 38, 839–843 (in Russian).

Biedunkova, O.O., 2015. Stabil’nist’ rozvytku ta tsytohenetychnyy homeostaz ikhtiopopulyatsiy richky Sluch u suchasnykh umovakh antropohennoho navantazhennya [The stability and development of cytogenetic homeostasis ihtio populations Sluch river in modern conditions of anthropogenic load]. Rybohospodars’ka Nauka Ukrayiny 31, 56–70 (in Ukrainian).

Biedunkova, O.O., Petruk, A.M., 2014. Fluktuyucha asymetriya plitky v richkakh Rivnenshchyny [Fluctuating asymmetry of gossip in rivers of Rivne region]. Pytannya Bioindykatsiyi ta Ekolohiyi 19, 139–149 (in Ukrainian).

Bobyl’ov, Y.P., Khrystov, O.O., 2013. Otsinka vplyvu stichnykh vod VAT «Dniprovazhmash» na pryberezhni uhrupovannya molodi ryb [Assessing the impact of wastewater JSC "Dneprotyazhmash" on coastal communities young fish]. Bioriznomanittya ta Rol’ Tvaryn v Ekosystemakh: Materialy VII Mizhnarodnoyi Naukovoyi Konferentsiyi. Dnipropetrovs’k. 81–84 (in Ukrainian).

Bosch, P. (ed.), 2003. Environmental indicators. Typology and use reporting. European Environment Agency, Copenhagen.

Brannen, L., Bielak, A. (ed.), 2004. Threats to water availability in Canada. National Water Research Institute, Environment Canada.

Brygadyrenko, V.V., Slynko, V.O., 2015. Morphological variability of Bembidion articulatum (Coleoptera, Carabidae) populations: Linear dimensions depend on sex, while morphological indices depend on ecosystems. International Journal of Applied Environmental Sciences 10(1), 163–187.

Buschini, A., Martino, A., Gustavino, B., Monfrinotti, M., Poli, P., Rossi, C., Santoro, M., Dörr, A.J.M., Rizzoni, M., 2004. Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization. Mutat. Res. 557, 119–129.

Cavas, T., 2011. Іn vivo genotoxicity evaluation of atrazine and atrazine-based herbicide on fish Carassius auratus using the micronucleus test and the comet assay. Food Chem. Toxicol. 49, 1431–1435.

Chakrabarti, C.G., Ghosh, K., 2013. Dynamical entropy via entropy of non-random matrices: Application to stability and complexity in modelling ecosystems. Math. Biosci. 245, 278–281.

Costanza, R., Fisher, B., Mulder, K., Liu, S., Christopher, T., 2007. Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecol. Econ. 61, 478–491.

Davoren, M., Fogarty, A.M., 2004. A test battery for the ecotoxicological evaluations of the agrichemical Environ. Ecotox. Environ. Safe. 59, 116–122.

Demchenko, V.O., 2011. Teoretychni ta praktychni aspekty problemy vykorystannya ryb yak indykatoriv stanu hidroekosystem (na prykladi Azovs’koho morya) [Theoretical and practical aspects of the use of fish as indicators of hidroekosystem (for example the Azov sea)]. Naukovi Zapysky Ternopilskoho Natsionalnoho Pedahohichnoho Universytetu Seriia Biolohiia 2, 26–31 (in Ukrainian).

Deng, X., Xu, Y., Han, L., Yu, Z., Yang, M., 2015. Assessment of river health based on an improved entropy-based fuzzy matter-element model in the Taihu Plain China. Ecol. Indic. 57, 85–95.

Dgebuadze, J.J., 2001. Jekologicheskie zakonomernosti izmenchivosti rosta ryb [Environmental variability in fish growth patterns]. Nauka, Moscow (in Russian).

Dórea, J.G., 2008. Persistent, bioaccumulative and toxic substances in fish: Human health considerations. Sci. Total Environ. 400, 93–114.

Falconer, D.S., Mackay, F.C., 1996. Introduction to quantitative genetics. 4th ed. Essex, England.

Fedorov, E.F., 2011. Jekologicheskaja ocenka antropogennogo vlijanija na ihtiofaunu reki Ishim juga Tjumenskoj oblasti [Environmental assesment anthropogenic impact on the ichthyofauna of the Ishim River in south of Tyumen region]. Omskij Gosudarstvennyj Pedagogicheskij Universitet, Omsk (in Russian).

Fedorova, E.A., 2012. Ocenka toksichnosti strobilurinovyh fungicidov dlja gidrobiontov [Assessment of toxicity to aquatic organisms strobilurin fungicides]. Juzhnyj Federal’nyj Universitet, Rostov-na-Donu (in Russian).

Gabibov, M.M., Abdullaeva, N.M., Ortabaeva, L.M., Ismailov, I.A., Asadulaeva, P.A., 2011. Vlijanie zagrjaznenija vodnoj sredy ionami Pb2+, Cd2+ i syroj neft’ju na nakoplenie geneticheski inducirovannyh povrezhdenij v jeritrocitah ryb [Influence of water pollution ions Pb2+, Cd2+ and crude oil on the accumulation of genetic damage induced in erythrocytes of fish]. Izvestija Samarskogo Nauchnogo Centra Rossijskoj Akademii Nauk 13, 1068–1070 (in Russian).

Garmendia, M., Borja, Á., Franco, J., Revilla, M., 2013. Phyto-plankton composition indicators for the assessment of eutrophication in marine waters: Present state and challenges within the European directives. Mar. Pollut. Bull. 66, 7–16.

Gilvear, D.J., Spray, C.J., Casas-Mulet, R., 2013. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. J. Environ. Manage. 126, 30–43.

Gorovaja, A.I., Skvorcova, T.V., Pavlichenko, A.V., Lisickaja, S.M., 2011. Monitoringovyj kontrol’ sostojanija vodnyh jekosisem na osnove citogeneticheskih metodov. Zbіrnik naukovih statej ІІІ Vseukrains’kogo z’izdu ekologіv. 1, 314–317 (in Ukrainian).

Greig, H.S., Niyogi, D.K., Hogsden, K.L., Jellyman, P.G., Hard-ing, J.S., 2010. Heavy metals: Confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity. Sci. Total Environ. 408, 3240–3250.

Gurbik, O.V., Rudik-Leuska, N.A., Yakovleva, T.V., 2014. Zakhody zi shtuchnoho vidtvorennya ikhtiofauny Kanivs'koho vodoskhovyshcha [Artificial fish propagation in kanev reservoir]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 4(3), 70–84 (in Ukrainian).

Gutiérrez, J.M., Villar, S., Plavan, A.A., 2015. Micronucleus test in fishes as indicators of environmental quality in subestuaries of the Río de la Plata (Uruguay). Mar. Pollut. Bull. 91, 518–523.

Halsband, C., Kurihara, H., 2013. Potential acidification impacts on zooplankton in CCS leakage scenarios. Mar. Pollut. Bull. 73, 495–503.

Handzyura, V.P., 2002. Produktyvnist’ biosystem za toksychnoho zabrudnennya seredovyshcha vazhkymy metallamy [Productivity biosystems pollution by toxic heavy metals]. Obriyi, Kyiv (in Ukrainian).

He, M., Luo, X., Chen, M., Sun, Y., Chen, S., Mai, B., 2012. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China. Sci. Total Environ. 419, 109–115.

Il’inskih, N.N., 1988. Ispol’zovanie mikrojadernogo testa v skrininge i monitoringe mutagenov [Using the micronucleus test in screening and monitoring of mutagens]. Tsitol. Genet. 22, 67–71 (in Russian).

Jana, B.B., Das, R.N., 1982. Growth responces of Clarias batrachus in experimental tanks under different conditions of feeding and maturing. Aquacult. Hung. 3, 113–123.

Jankova, N.V., 2006. Jekologo-morfologicheskie osobennosti diploidno-triploidnyh kompleksov serebrjanogo karasja (Carassius aurates gibelio (Bloch)) na primere ozer mezhdurech’ja Tobol-Tavda [Ecological and morphological characteristics of diploid-triploid complexes goldfish (Carassius auratus gibelio (Bloch)) as an example of lakes Tobol-Tavda]. Tjumenskij Gosudarstvennyj Universitet, Tjumen’ (in Russian).

Jayaprakash, M., Kumar, R.S., Giridharan, L., Sujitha, S.B., Sarkar, S.K., Jonathan, M.P., 2015. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotox. Environ. Safe. 120, 243–255.

Jurceva, A.O., Lajus, D.L., Artamonova, V.S., Titov, S.F., Studenov, I.I., 2008. Izmenchivost’ osteologicheskih priznakov molodi atlanticheskogo lososja (Salmo salar L.) severo-zapada Rossii: Uroven’ fluktuirujushhej asimmetrii i srednie znachenija priznakov [Variability osteological signs of juvenile Atlantic salmon (Salmo salar L.) north-west of Russia: The level of fluctuating asymmetry and average characteristic values]. Vestnik Sankt-Peterburgskogo Universiteta 3, 29–40 (in Russian).

Karadžić, V., Subakov-Simić, G., Krizmanić, J., Natić, D., 2010. Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination 255, 91–96.

Kashulin, N.A., 1995. Sostojanie populjacij ryb v nebol’shih vodoemah lesnoj zony Kol’skogo severa v uslovijah aerotehnologicheskogo zagrjaznenija [Status of fish populations in small ponds of the forest zone in the north of the Kola conditions aerotehnologicheskogo pollution]. Problemy himicheskogo i biologicheskogo monitoringa jekologicheskogo sostojanija vodnyh obiektov Kol’skogo Severa. Apatity, 120–143 (in Russian).

Kazakova, D.D., 2009. Asimmetrija parnyh struktur obyknovennogo gol’jana nekotoryh vodotokov bassejnov rek Pechora i Vychegda. Bioresurs 244–247 (in Russian).

Kostyleva, L.A., Peskova, T.J., 2011. Ocenka gomeostaza razvitija ryb nizhnego Dona po pokazatelju fluktuirujushhej asimmetrii. [Evaluation homeostasis of fish lower Don in terms of fluctuating asymmetry]. Estestvennye Nauki 36, 44–50 (in Russian).

Kozlov, V., Zvereva, E., 2015. Confirmation bias in studies of fluctuating asymmetry. Ecol. Indic. 57, 293–297.

Krjukov, V.I., Kochkarjov, P.V., 2013. Chastota mikrojader v kletkah krovi ryb presnyh vodojomov poluostrova Tajmyr [The frequency of micronuclei in blood cells of fish freshwater reservoirs of the Taimyr peninsula]. Obrazovanie, Nauka i Proizvodstvo 1, 35–37 (in Russian).

Krysanov, E.Y., 1987. Aneuploidiya i khromosomnyy mozaitsizm u ryb [Aneuploidy and chromosomal mosaicism in fish]. Institut Evolyutsionnoy Morfologii i Ekologii im. A.N. Severova, Moscow (in Russian).

Kuderskiy, L.A., 1987. Ryby kak biologicheskie indikatory sostoyaniya vodnoy sredy [Fish as biological indicators of the state of the aquatic environment]. Metody ikhtiologicheskikh issledovaniy: Tez. dokl. I Vses. Simpoziuma po Metodam Ikhtiotoksikol. Issled., 71–73 (in Russian).

Kurbanova, I.K., 2002. Vlijanie neftjanogo zagrjaznenija vodnoj sredy na morfofunkcional’nye pokazateli kutuma i bychka-krugljaka [The impact of oil pollution of the aquatic environment on morphological and functional indicators kutum and bull-logs]. Dagestanskij Gosudarstvennyj Universitet, Mahachkala (in Russian).

Kuzina, T.V., 2011. Izmenenija struktury jadra jeritrocitov perifericheskoj krovi promyslovyh ryb Volgo-Kaspijskogo kanala. Vestnik Moskovskogo Gosudarstvennogo Oblastnogo Universiteta. Serija «Estestvennye Nauki» 2, 50–57 (in Russian).

Lajus, D.L., 1991. Analiz fluktuirujushhej asimmetrii kak metod populjacionnyh issledovanij belomorskoj sel’di [An analysis of fluctuating asymmetry as a method of populationbased studies of the White Sea herring]. Trudy Zool. In-ta AN SSSR 235, 121–128 (in Russian).

Lajus, D.L., 1996. What is the White Sea herring (Clupea pallasi marisalbi Berg, 1923)? A new concept of the population structure. Proceedings of the VIII Congress Societatis Europaea Ichtiologorum. Oviedo, Spain 21, 221–230.

Lajus, D.L., Graham, J.H., Kozhara, A.V., 2003. Developmental instability and the stochastic component of total phenotypic variance. Developmental instability: Causes and consequences. Oxford, 343–363.

Lajus, D.L., Grjem, D.H., Katolikova, M.V., Jurceva, A.O., 2009. Fluktuirujushhaja asimmetrija i sluchajnaja fenotipicheskaja izmenchivost’ v populjacionnyh issledovanijah: Istorija, dostizhenija, problemy, perspektivy [Fluctuating asymmetry and phenotypic variability in a random population-based studies: History, achievements, problems and prospects]. Vestnik Sankt-Peterburgskogo Universiteta 3, 98–110 (in Russian).

Lajus, D.L., Knust, R., Brix, O., 2003. Fluctuating asymmetry and other parameters of morphological variation of elpout Zoarces viviparus from different parts of distributional range. Sarsia 88, 247–260.

Ledebur, M., Schmid, W., 1973. The micronucleus test methodo-logical aspects. Mutat. Res.-Fund. Mol. M. 19, 109–117.

Lemos, A.T., Rosa, D.P., Vaz, J.A., Ferrão, V.M., 2009. Mutagenicity assessment in a river basin influenced by agricultural, urban and industrial sources. Ecotox. Environ. Safe. 72, 2058–2065.

Lugas’kova, N.V., 2003. Species specificity of the cytogenetic stability of fish in a eutrophic water body. Russ. J. Ecol. 34(3), 210–214.

Luk’yanenko, V.I., Cherkashin, S.A., 1987. Ikhtiologicheskiy monitoring – vazhneyshiy instrument otsenki kachestva vodnoy sredy [Ichthyological monitoring – an important tool for assessing water quality]. Metody Ikhtiologicheskikh Issledovaniy: Tez. Dokl. I Vses. Simpoziuma po Metodam Ikhtiotoksikol. Issled., 91–93 (in Russian).

Mabrouk, L., Guarred, T., Hamza, A., Messaoudi, I., Noureddine, A., 2014. Fluctuating asymmetry in grass goby Zosterisessor ophiocephalus Pallas, 1811 inhabiting polluted and unpolluted area in Tunisia. Mar. Pollut. Bull. 85, 248–251.

Miheev, P.B., Petrenko, N.G., Ogorodov, S.P., Miheeva, O.I., 2014. Ob izmenchivosti chisla zhuchek sterljadi Acipenser ruthenus v areale i akvakul’ture [The variability of bug starlet Acipenser ruthenus in the area and Aquaculture]. Rybovodstvo i Rybnoe Hozjajstvo 10, 25–31 (in Russian).

Mikrjakov, D.V., Mikrjakov, V.R., Stepanova, V.M., 2015. Vlijanie nekotoryh jekologicheskih faktorov na soderzhanie antigenreagirujushhih limfocitov v organizme karpa Cyprinus carpio [The influence of some environmental factors on the content of the antigen-reactive lymphocytes in the body of carp Cyprinus carpio]. Problemy Patologii, Immunologii i Ohrany Zdorov’ja Ryb i Drugih Gidrobiontov 588, 202–209 (in Russian).

Moiseenko, T.I., 2000. Morphophysiological rearrangements in fish in response to pollution (in the Light of S.S. Shvarts’ theory). Russ. J. Ecol. 6, 429–438.

Moiseenko, T.I., 2008. The concept of ecosystem health in water quality assessment and rating of anthropogenic loads. Russ. J. Ecol. 6, 390–397.

Moiseenko, T.I., Gashkina, N.A., 2011. Zonal’nye osobennosti zakislenija vod [Zone features water acidification]. Vodnye Resursy 38, 1–17 (in Russian).

Nunes, E.A., Lemos, C.T., Gavronski, L., Moreira, T.N., Oliveira, N.C.D., Silva, J., 2011. Genotoxic assessment on river water using different biological systems. Chemosphere 84, 47–53.

Ogden, J.C., Baldwin, J.D., Bass, O.L., Browder, J.A., Cook, M.I., Frederick, P.C., Frezza, P.E., Galvez, R.A., Hodgson, A.B., Meyer, K.D., Oberhofer, L.D., Paul, A.F., Fletcher, P.J., Davis, S.M., Lorenz, J.J., 2014. Waterbirds as indicators of ecosystem health in the coastal marine habitats of Southern Florida: 2. Conceptual ecological models. Ecol. Indic. 44, 128–147.

Ohe, T., White, P.A., De Marini, D.M., 2003. Mutagenic characteristics of river waters flowing through large metropolitan areas in North America. Mutat. Res. Genet. Toxicol. Environ. Mutagen 534, 101–112.

Parsons, P.A., 1990. Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 65, 131–145.

Penczak, T., Zalewski, M., Molinski, M., Szpoton, K., 1976. The ecology of roach, Rutilus rutilus (L.) in the barbell region of the polluted Pilica river. Ekol. Pol. 24, 473–489.

Petrova, A.V., 2012. Opyt ispol’zovanija pokazatelej fluktuirujushhej asimmetrii v ihtiomonitoringe malyh rek Sibiri [Experience in the use of indicators of fluctuating asymmetry in ichthyosis monitoring of small rivers of Siberia]. Molodjozh’ i Nauka: Sbornik Materialov VIII Vserossijskoj Nauchno-Tehnicheskoj Konferencii, 31–41 (in Russian).

Podopryhora, V.N., 2010. Vplyv stres-faktoriv na rist ta vyzhyvanist’ molodi ryb [The impact of stress factors on the growth and survival of young fish]. Instytut Rybnoho Hospodarstva, Kyiv (in Ukrainian).

Pomorceva, N.A., Rodionova, N.K., Gudkov, D.I., 2011. Kletochnyj sostav perefericheskoj krovi karasja obyknovennogo v vodoemah Chernobyl’skoj zony otchuzhdenija [The cellular composition of peripheral blood of an ordinary carp ponds in the Chernobyl exclusion zone]. Naukovi Zapysky Ternopilskoho Natsionalnoho Pedahohichnoho Universytetu Seriia Biolohiia 2(47), 45–48 (in Ukrainian).

Pustovojt, S.P., 2010. Analiz vzaimosvjazi geterozigotnosti i velichiny fluktumrujushhej asimmetrii gorbushi (Oncorhynchus gorbucha) [Analysis of the relationship of heterozygosity and the value of fluctuating asymmetry of salmon (Oncorhynchus gorbuscha)]. Russian Journal of Genetics: Applied Research 14, 530–536 (in Russian).

Ranitaniemi, J., 1995. The growth of young pike in small Finnish lakes with different acidity-related water properties and fish species composition. J. Fish Biol. 47, 115–125.

Ranitaniemi, J., Rask, M., Vuorinen, P.J., 1988. The growth of perch, Perca fluviatilis L., in small Finish lakes at different stages of acidification. Ann. Zool. Fenn. 3, 209–219.

Rocchetta, I., Lomovasky, B.J., Yusseppone, M.S., Sabatini, S.E., Bieczynski, F., Ríos de Molina, M.C., Luquet, C.M., 2014. Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glaciar lake of North Patagonia limnologica. Ecology and Management of Inland Waters 44, 72–80.

Romanov, N.S., 1995. Fluktuirujushhaja asimmetrija lososej zavodskogo i estestvennogo vosproizvodstva [Fluctuating asymmetry salmon hatchery and natural reproduction]. Biologija Morja 21, 328–335 (in Russian).

Rudik-Leuska, N.J., Kotovska, H.O., Slynko, E.E., Khrystenko, D.S., 2014. Raritetnyj komponent ikhtiofanuny landshaftnogo zakaznika obshhegosudarstvennogo znacheniya "Culinskij" [Rare component of the fish fauna of the Sulinsky national landscape reserve]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 4(2), 19–33 (in Russian).

Sfakianakis, D.G., Renieri, E., Kentouri, M., Tsatsakis, A.M., 2015. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. 137, 246–255.

Sherman, I.M., Pilipenko, J.V., 1999. Ihtiologicheskij russko-ukrainskij tolkovyj slovar’ [Ichthyological russian-ukrainian dictionary]. Al’ternatyvy, Kiyv (in Ukrainian).

Smagin, A.I., Lugas’kova, N.V., Men’shih, T.B., 2005. Citogeneticheskoe issledovanie ryb iz vodoema-hranilishha othodov PO «MAJaK» [Cytogenetic study of fish from the reservoir storage of waste "Mayak"]. Problemy Radiojekologii i Pogranichnyh Discipline 7, 97–118 (in Russian).

Smith, J.T., 2006. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish. Sci. Total Environ. 368, 502–518.

Sondak, V.V., 2009. Do pytannya reabilitatsiyi umov vidtvorennya aboryhennoyi ikhtiofauny ta formuvannya stiykosti vodnoho seredovyshcha u transformovaniy richkoviy merezhi Zakhidnoho Polissya Ukrayiny [On the issue of rehabilitation of conditions of reproduction and formation of native fish fauna sustainability of the water environment in river networks transformed Western Polissya Ukraine]. Rybohospodars’ka Nauka Ukrayiny 3(9), 54–60 (in Ukrainian).

Stiller, K., Vanselow, K., Moran, D., Bojens, G., Voigt, W., Meyer, S., Schulz, C., 2015. The effect of carbon dioxide on growth and metabolism in juvenile turbot Scophthalmus maximus L. Aquaculturen 444, 143–150.

Swaddle, J.P., 2003. Fluctuating asymmetry, animal behavior, and evolution. Adv. Stud. Behav. 32, 169–205.

Torres, L., Nilsen, E., Grove, R., Patiño, R., 2014. Health status of Largescale Sucker (Catostomus macrocheilus) collected along an organic contaminant gradient in the lower Columbia River, Oregon and Washington, USA. Sci. Total Environ. 484, 353–364.

Trebilco, R., Baum, J., Salomon, A., Dulvy, N., 2013. Ecosystem ecology: Size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423–431.

Uitteker, R., 1980. Soobshhestva i jekosistemy [Communities and ecosystems]. Progress, Moscow (in Russian).

Van Valen, L., 1962. Study of fluctuating asymmetry. Evolution 16, 125–146.

Vinohradov, K.P., Sakun, Y.V., Byelousova, K.M., Honcharov, H.L., Shabanov, D.A., 2012. Vyvchennya fluktuyuchoyi asymetriyi richkovoho okunya (Perca fluviatilis L., 1758) [The study of fluctuating asymmetry of river perch (Perca fluviatilis L., 1758)]. Biolohiya ta Valeolohiya 14, 9–17 (in Ukrainian).

Voslarova, E., Pistekova, V., Svobodova, Z., Bedanova, I., 2008. Nitrite toxicity to Danio rerio: Effects of subchronic exposure on fish growth. Acta Vet. 77, 455–460.

Wison, R.W., Bergman, H.L., Wood, C.M., 1994. Metabolic costs and physiological consequences of assimilation to aluminium in juvenile rainbow trout (Oncorhynchus mykiss). 1. Acclimation specificity, resting physiology, feeding, and growth. Canad. J. Fish. Aquat. Sci. 51, 527–535.

Xu, F., Yang, Z., Chen, B., Zhao, Y., 2013. Development of a structurally dynamic model for ecosystem health prognosis of Baiyangdian Lake. Ecol. Indic. 29, 398–410.

Zaharov, V.M., 1987. Asimmetrija zhivotnyh (populjacionno-fenogeneticheskij podhod) [The asymmetry of animals (population-phenogenetically approach)]. Nauka, Moscow (in Russian).

Zaharov, V.M., Chubinishvili, A.T., 2001. Monitoring zdorov’ja sredy na ohranjaemyh prirodnyh territorijah [Monitoring the health of the environment in protected areas]. Centr Jekologicheskoj Politiki Rossii, Moscow (in Russian).

Zakharov, V.M., 1993. Appearance, fixation and stabilization of environmentally induced phenotypic changes as a microevolutionary event. Genetica 89, 227–234.