Ecogeographical determinants of the ecological niche of the common milkweed (Asclepias syriaca) on the basis of indices of remote sensing of land images

  • O. M. Kunah Oles Honchar Dnipropetrovsk National University
  • O. S. Papka Poltava State Agrarian Academy
Keywords: vegetative indices, NDVI, principal component analysis, digital model of relief


The patterns of variation in vegetative indices received by means of data of remote land sensing are described as being dependant on geomorphological predictors and the sizes of agricultural fields in an experimental polygon within Poltava region. The possibilities of application of vegetative indices have been explored through ecogeographical determinants of the ecological niche of the common milkweed (Asclepias syriaca L.) and other weeds. On the basis of images of the land surface taken on 23 March and 27 August 2015 by the sensor control Operational Land Imager (OLI), installed on the satellite Landsat 8, vegetative indices have been calculated (AC-Index – aerosol/coastal index, Hydrothermal Composite, NDTI – Normalized Difference Tillage Index, NDVI – Normalized Difference Vegetation Index, VI – Vegetation Index, MNDW – Modified Normalized Difference Water Index, LSWI – Land Surface Water Index, NBR – Normalized Burn Ratio, M15). The data obtained have been subjected to principal component analysis and the revealed principal components have been interpreted with the help of regression analysis, in which geomorphological variables have been applied as predictors. It was possible to explain the trends of variability of the vegetative cover, formalized in the form of the principal component, by means of indices which quantitatively characterise features of relief. The various aspects of variation of vegetative cover have been shown to be characterised by the specificity of the influence of relief factors. A prominent aspect of the variation of the vegetative cover of agroecosystems is variability within a field. The degree of a variation of conditions is proportional to the size of a field. Large fields occupy level plain positions. In turn, within small fields sources of variation are changes in ecological conditions which arise owing to unevenness of relief, which increases in proximity to gullies and ravines. We have identified the aspects of the variation of vegetative cover which by their nature can be considered as contributers to the growth of weeds in agroceonoses. Satellite imaging by Landsat does not allow direct identification of concentrations of weeds, but it can reveal complex changes in the landscape cover, which act as markers of the processes connected with development of weed vegetation. The procedure of further decoding of satellite images for the purpose of identification of weeds requires greater attention in this field of research.


Arnold, G.W., Dandridge, F., 1985. The capeweed content of pastures in south-west Western Australia. Aust. J. Exp. Agr. 25(1), 117–123.

Auld, B.A., 1995. A brief overview of weed survey methods. In: Lemmerle, D., Corey, S. (eds.). Survey Workshop, Proceedings of a workshop, Wagga Wagga, NSW. Cooperative Research Centre for Weed Management Systems, Adelaide, Australia. 3–4.

Brower, L.P., 1995. Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. J. Lepid. Soc. 49, 304–385.

Brown, R.B., Steckler, J.-P.G.A., Anderson, G.W., 1994. Remote sensing for identification of weeds in no-till corn. Transactions of the American Society of Agricultural Engineers 37(1), 297–302.

Brygadyrenko, V.V., 2015. Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research 9(4), 1183–1192.

Bugg, R.L., Pickett, C.H., 1998. Introduction: Enhancing biological control-habitat management to promote natural enemies of agricultural pests. In: Pickett, C.H., Bugg, R.L. (Eds.). Enhancing biological control. University of California Press, Berkeley. 1–23.

Campbell, M.H., 1991. Weed control in pastures – are we winning? Plant Protection Quarterly 6(2), 55–63.

Cardina, J., Johnson, G.A., Sparrow, D.H., 1997. The nature and consequence of weed spatial distribution. Weed Sci. 45(3), 364–373.

Cramer, G.L., Burnside, O.C., 1982. Distribution and interference of common milkweed (Asclepias syriaca) in Nebraska. Weed Sci. 30(4), 385–388.

Csontos, P., Bózsing, E., Cseresnyés, I., Penksza, K. 2009. Reproductive potential of the alien species Asclepias syriaca (Asclepiadaceae) in the rural landscape. Pol. J. Ecol. 57(2), 383–388.

Demidov, A.A., Kobets, A.S., Gritsan, Y.I., Zhukov, A.V., 2013. Prostranstvennaya agroekologiya i rekultivatsiya zemel [Spatial agroecology and land recultivation]. «Svidler A.L.», Dnepropetrovsk (in Russian).

Dewey, S.A., Price, K.P., Ramsey, D., 1991. Satellite remote sensing to predict potential distribution of dyers woad (Isatis tinctoria). Weed Technol. 5(3), 479–484.

Dychenko, O.Y., Pysarenko, P.V., Kunakh, O.M., Zhukov, O.V., 2015. Prostorova ahroekolohiya yak osnova prohnozu chysel’nosti shkidnykiv [Spatial agroecology as basis of the prognosis of the pest abundance]. Dnipropetrovsk Univ. Press, Dnipropetrovsk (in Ukranian).

Everitt, J.H., Anderson, G.L., Escobar, D.E., Davis, M.R., Spenser, N.R., Andrascik, R.J., 1995. Use of remote sensing for detecting and mapping Leafy Spurge (Euphorbia esula). Weed Technol. 9(3), P. 599–609.

Everitt, J.H., Escobar, D.E., Alaniz, M.A., Davis, M.R., Richerson, J.V., 1996. Using spatial information technologies to map Chinese Tamarisk (Tamarix chinensis) infestations. Weed Sci. 44(1), 194–201.

Everitt, J.H., Escobar, D.E., Alaniz, M.A., Villarreal, R., Davis, M.R., 1992. Distinguishing brush and weeds on rangelands using video remote sensing. Weed Technol. 6(4), 913–921.

Fitzpatrick, B.T., Hill, G.J.E., Kelly, G.D., 1990. Mapping and monitoring of weed infestations using satellite remote sensing data. Proceedings 5th Australasian Remote Sensing Conference, Perth, Western Australia. 598–601.

Gardiner, D.B., Tupper, G.J., Dudgeon, G.S., 1998. A quantitative appraisal of woody shrub encroachment in Western New South Wales. Rangeland J. 20(1), 26–40.

Hartzler, R.G., Buhler, D.D., 2000. Occurence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Protection 19(5), 363–366.

Kim, D.O., Myuler, U., 1989. Faktornyiy, diskriminantnyiy i klasternyiy analiz [Factor, cluster and discriminant analusis]. Finansyi i Statistika, Moscow (in Russian).

Kunakh, O.M., Papka, O.S., 2016. Heomorfolohichni ekoheohrafichni zminni, yaki vyznachayut’ osoblyvosti ekolohichnoyi nishy vatochnyka syriys’koho (Asclepias syriaca L.) [Geomorphological ecogeographical variables definig features of an ecological niche of common milkweed (Asclepias syriaca L.)]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 6(1), 63–91 (in Ukranian).

Landis, D.A., Wratten, S.D., Gurr, G.M., 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201.

Lass, L.W., Callihan, R.H., 1993. GPS and GIS for weed surveys and management. Weed Technol. 7(1), 249–254.

Lass, L.W., Carson, H.W., Callihan, R.H., 1996. Detection of yellow starthistle (Centaurea solstitialis) and common St. Johnswort (Hypericum perforatum) with multispectral digital imagery. Weed Technol. 10(3), 466–474.

Konovalova, T.М., Zhukov, O.V., Pakhomov, O.Y., 2010. GIS-podkhod dlya otsenki izmenchivosti elektroprovodnsti pochvy pod vliyaniyem pedoturbatsionnoy aktivnosti slepysha (Spalax microphthalmus) [Gis-approach for variability assessment of soil electric conductivity under pedoturbation activity of mole rat (Spalax microphthalmus)]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 18(1), 58–66.

Kulbachko, Y., Loza, I., Pakhomov, O., Didur, O., 2011. The zoological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe zone. In: Behnassi, M. et al. (eds.), Sustainable agricultural development. Springer Science + Business Media, Dordrecht, Heidelberg, London, New York, 115–123.

Malcolm, S.B., Cockrell, B.J., Brower, L.P., 1989. The cardenolide fingerprint of monarch butterflies reared on the common milkweed, Asclepias syriaca. J. Chem. Ecol. 15, 819–853.

Moody, M.E., Mack, R.N., 1988. Controlling the spread of plant invasions: The importance of nascent foci. J. Appl. Ecol. 25, 1009–1021.

Mosalets, T.Z., 2015. Vplyv mozajichnoho rozmishennja sortiv ozymoji pshenyci na ahroriznomanittja [Effect of plantitng pattern of winter wheat on agrodiversity]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 5(2), 31–43 (in Ukrainian).

Paukova, Ž., Knepekova, M., Hauptvolg, M., 2014. Mapping of alien species of Asclepias syriaca and Fallopia japonica populations in the agricultural landscape. J. Cent. Eur. Agr. 15(2), 12–22.

Peters, A.J., Reed, B.C., Eve, M.D., McDaniel, K.C., 1992. Remote sensing of brome snakeweed (Gutierrezia sarothrae) with NOAA-10 spectral image processing. Weed Technol. 6(4), 1015–1020.

Pitt, J.L., Miller, I.L., 1988. A review of survey techniques for the detection of weeds with particular reference to Mimosa pigra L. Australia and Thailand. Plant Protection Quarterly 3(4), 149–155.

Price, J.C., 1994. How unique are spectral signatures? Remote Sens. Environ. 49(3), 181–186.

Puzachenko, Y.G., Fedyaeva, M.V., Kozlov, D.N., Puzachenko, M.Y., 2006. Metodologicheskie osnovaniya otobrazheniya elementarnyih geosistemnyih protsessov [Methodological basis of the elementar geosystem processes reflaction]. Sovremennyie estestvennyie i antropogennyie protsessyi v pochvah geosistem. Pochv. Inst. im. V.V. Dokuchaeva, Moscow. 13–52 (in Russian).

Remenyuk, S.O., 2013. Biolohichni osoblyvosti i rozrobka zakhodiv kontrolyuvannya vatochnyka syriys’koho v umovakh livoberezhnoho Lisostepu Ukrayiny [Biological properties and development of the control approaches of the Asclepias syriaca in the left bank forest steppe of the Ukraine]. Kyiv (in Ukranian).

Rew, L.J., Miller, P.C.H., Paice, M.E.R., 1997. The importance of patch spraying resolution for sprayer control. Aspects of Applied Biology 48, 49–55.

Robertson, G.P., Swinton, S.M., 2005. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 3, 38–46.

Sarkany, E.S., Lehotczky, E., Tamas, J., Nagy, P., 2008. Spreading, ecology and damages by the Common milkweed (Asclepias syriaca L.) in Hungary. Cereal Res. Commun. 36(3), 1571–1574.

Saskevich, P.A., Mirenkov, Y.A., Soroka, S.V., 2008. Agrobiologicheskoe obosnovanie mer borbyi s mnogoletney sornoy rastitelnostyu v usloviyah Respubliki Belarus [Agrobiological basis of the control approaches of the perennial weeds in Republic Belarus]. Nesvizh. Ukrupn. Tipograf., Nesvizh (in Russian).

Swinton, S.M., Robertson, G.P., Landis, D.A., Lupi, G.P., 2006. Ecosystem services from agriculture: Looking beyond the usual suspects. Am. J. Agr. Econ. 88, 1160–1166.

Valachovič, M., 1987. On coenology of Asclepias syriaca in Záhorská nížina lowland (West Slovakia). Zpr. Čs. Bot. Společ 22, 59–60.

Valachovič, M., 1998. Poznámky k biológii druhu Asclepias syriaca na Záhorskej nížine [Notes on the biology of the species Asclepias syriaca in the Záhorská nížina Lowland]. Zborník z konferencie mladých vedeckých pracovníkov. Bratislava, CBEV SAV. 58–63 (in Slovakian).

van Deventer, A.P., Ward, A.D., Gowda, P.H., Lyon, J.G., 1997. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Rem. S. 63, 87–93.

Zhukov, A.V., 2015. Analiz prostorovykh danykh v ekolohiyi ta sil’s’komu hospodarstvi [Analysis of spatial data in ecology and agriculture]. Dnipropetrovsk Univ. Press, Dnipropetrovsk (in Ukranian).

Zhukov, A.V., Kunah, O.N., Konovalova, T.M., 2011. Landshaftnyj aspekt jekologicheskoj nishi slepyshej [Land-scape aspect of the mole rats (Spalax microphthalmus Guldenstaedt, 1770) ecological niche]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3, 13–27 (in Russian).

Zhukov, A.V., Kunah, O.N., Zadorozhnaja, G.A., Andrusevich, E.V., 2013. Landshaftnaja jekologija kak osnova prostranstvennogo analiza produktivnosti agrocenozov [Landscape ecology as a basis of the spatial analysis of the agrocoenosis productivity]. Ecology and Noospherology 24(1), 68–80 (in Russian).