Influence of cadmium loading on the state of the antioxidant system in the organism of bulls


  • B. V. Gutyj National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • S. D. Mursjka National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • D. F. Hufrij National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • I. I. Hariv National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • N. D. Levkivska National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • N. V. Nazaruk National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • M. B. Haydyuk National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • O. B. Priyma National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • O. Y. Bilyk National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
  • Z. A. Guta National University of Lviv Veterinary Medicine and Biotechnologies named after S.Z. Gzhytskyj
Keywords: cadmium, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamins, selenium

Abstract

This article presents the results of research on the influence of cadmium loading on the state level of enzymatic and non-enzymatic antioxidant links of the antioxidant defense system of the organisms of young cattle, such as the activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels, selenium, vitamins A and E. It was found that feeding bull calves with cadmium chloride at doses of 0.03 and 0.05 mg/kg of body weight helped to reduce both the enzymatic and non-enzymatic link of antioxidant protection (superoxide dismutase 31%, catalase 13%, glutathione peroxidase 23%, reduced glutathione 10%, vitamin A 28%, vitamin E 31%, selenium 20%). Toxic effects of cadmium promotes change in steady-state concentrations of radical metabolites О2–,ОН˙, НО2˙, which, in turn, trigger the process of lipid peroxidation. The lowest level of indicators of antioxidant defense system in the blood of young cattle was registered on the sixteenth and twenty-fourth days of the experiment, which is associated with increased activation of lipid peroxidation and the disturbaance of the balance between the antioxidant system and lipid peroxidation intensity. The activity of the antioxidant defense system in the blood was different for calves fed with cadmium chloride at doses of 0.03 and 0.05 mg/kg of animal mass. The more cadmium chloride in the feed, the lower the activity of the antioxidant defense system of the calves’ organisms was registered. Thus cadmium chloride depresses the antioxidant defense system, which specifically involves lowering the activity of enzymatic links (catalase, superoxide dismutase, glutathione peroxidase) and non-enzymatic links (reduced glutathione, selenium, vitamins A and E).

References

Al-Attar, A.M., 2011. Antioxidant effect of vitamin E treatment on some heavy metalsinduced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 18, 63–72.
Al-Azemi, M., Omu, F.E., Kehinde, E.O., Anim, J.T., Oriowo, M.A., Omu, A.E., 2010. Lithium protects against toxic effects of cadmium in the rat testes. J. Assist. Reprod. Genet. 27, 469–476.
Ali, M.M., Murthy, R.C., Chandra, S.V., 1986. Developmental and longterm neurobehavioral toxicity of low-level in utero Cd exposure in rats. Neurobeh. Toxicol. Ter. 8, 463–468.
Antonio, M.T., Benito, M.J., Leret, M.L., Corpas, I., 1998. Gestation administration of cadmium alters the neurotransmitter levels in newborn rat brains. J. Appl. Toxicol. 18, 83–88.
Bielenichev, I.F., Kovalenko, S.I., Dunaiev, V.V., 2002. Antyoksydanty: Suchasne uiavlennia, perspektyvy stvorennia [Antioxidants: Modern idea, the prospects of creating]. Liky 1, 25–29 (in Ukrainian).
Brygadyrenko, V., Ivanyshyn, V., 2015. Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. Journal of Forest Science 61(9), 369–376.
Chaney, R.L., Ryan, J.A., Kukier, U., Brown, S.L., 2001. Heavy metal aspects of compost use. In: Stoffella, P.J., Khan, B.A. (ed.) Compost utilization in horticultural cropping systems. CRC Press LLC, Boca Raton. 324–359.
Dubinina, E.E., Sal’nikova, L.J., Efimova, L.F., 1983. Aktivnost’ i izofermentnyj spektr superoksiddismutazy jeritrocytov [Activity and isoenzyme spectrum of erythrocyte superoxide dismutase]. Lab. Delo 10, 30–33 (in Russian).
El-Refaiy, A.I., Eissa, F.I., 2012. Protective effects of ascorbic acid and zinc against cadmium-induced histopathological, histochemical and cytogenetic changes in rats. Comunicata Scientiae 3(3), 162–180.
El-Shahat, A.E., Gabr, A., Meki, A.R., Mehana, E.S., 2009. Al-tered testicular morphology and oxidative stress induced by cadmium in experimental rats and protective effect of simultaneous green tea extract. Int. J. Morphol. 27(3), 757–764.
Ferreira, A.L.A., Machado, P.E.A., Matsubara, L.S., 1999. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro. Braz. J. Med. Biol. Res. 32(6), 689–694.
Fregoneze, J.B., Marinho, C.A., Soares, T., Castro, L., Sarmento, C., Cunha, M., Gonzalez, V., Oliveira, P., Nascimento, T., Luz, C.P., Santana, J.P., De-Oliveira, I.R., e-Castro-e-Silva, E., 1997. Lead (Pb2+) and cadmium (Cd2+) inhibit the dipsogenic action of central beta-adrenergic stimulation by isoproterenol. Braz. J. Med. Biol. Res. 30(3), 419–423.
Gupta, R.S., Gupta, E.S., Dhakal, B.K., Thakur, A.R., Ahnn, J., 2004. Vitamin C and vitamin E protect the rat testes from cadmium – induced reactive oxygen species. Mol. Cells 17(1), 132–139.
Gutij, B., 2013. Wpływ dodatków paszowych Meweselu i Metifenu na poziom produktów peroksydacji lipidów w warunkach przewlekłego zatrucia kadmem. Pasze Przemysłowe Słowe NR4, 24–26.
Hansen, K.H., Pedersen, A.J., Ottosen, L.M., Villumsen, A., 2001. Speciation and mobility in straw and wood combustion fly ash. Chemosphere 45, 123–128.
Honskyy, Y.I., Yastremskaya, S.O., Boychuk, B.R., 2001. Vikovi osoblyvostsi porushennya peroksydnoho okyslennya lipidiv i aktyvnosti enerhozabezpechuvalnyh fermentiv pry kadmiyeviy intoksykatsiyi [Age features breach of lipid peroxidation and activity of enzymes in utility cadmium intoxication]. Medichna chimiya – Medical Chemistry 3(1), 16–19 (in Ukrainian).
Hutiy, B.V., 2012. Vplyv chlorydu kadmiyu na intensyvnist procesiv perekysnogo okisnenya lipidiv ta stan systemy antyoksydantnoho zahystu organizmu schuriv [Effect of cadmium chloride on the intensity of lipid peroxidation and antioxidant status of the body of rats]. Bulletin of Sumy National Agrarian University 7, 31–34 (in Ukrainian).
Hwang, D.F., Wang, L.C., 2001. Effect of taurine on toxicity of cadmium in rats. Toxicology 167(3), 173–180.
Kabata-Pendias, A., 2004. Soil–plant transfer of trace elements – an environmental issue. Geoderma 122, 143–149.
Koroljuk, M.A., Ivanova, L.I., Majorova, I.G., Tokarev, V.E., 1988. Metod opredelenija aktivnosti katalazy [The method for determining the activity of catalase]. Lab. Delo 1, 16–18 (in Russian).
Kulbachko, Y., Loza, I., Pakhomov, O., Didur, O., 2011. The zoological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe zone. In: Behnassi, M. et al. (eds.), Sustainable agricultural development. Springer Science + Business Media, Dordrecht, Heidelberg, London, New York, 115–123.
Liu, J., Qian, S.Y., Guo, Q., Jiang, J., Waalkes, M.P., Mason, R.P., Kadiiska, M.B., 2008. Cadmium generates reactive oxygen- and carbon-centered radicalspecies in rats: Insights from in vivo spin-trappingstudies. Free Radic. Biol. Med. 45, 475–481.
Lu, J., Jin, T., Nordberg, G., Nordberg, M., 2005. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol. Appl. Pharmacol. 206, 150–156.
Massadeh, A.M., Al-Safi, S., 2005. Analysis of cadmium and lead: Their immunosuppressive effects and distribution in various organs of mice. Biol. Trace Elem. Res. 108, 279–286.
Pavan Kumar, G., Prasad, M.N.V., 2004. Cadmium-inducible proteins in Ceratophyllum demersum L. (a fresh water macrophyte): Toxicity bioassays and relevance to cadmium detoxification. B. Environ. Contam. Tox. 73(1), 174–181.
Peng, L., Huang, Y., Zhang, J., Peng, Y., Lin, X., Wu, K., Huo, X., 2015. Cadmium exposure and the risk of breast cancer in Chaoshan population of southeast China. Environ. Sci. Pollut. R. 22(24), 19870–19878.
Peng, L., Wang, X., Huo, X., Xu, X., Lin, K., Zhang, J., Huang, Y., Wu, K., 2015. Blood cadmium burden and the risk of nasopharyngeal carcinoma: A case–control study in Chinese Chaoshan population. Environ. Sci. Pollut. R. 22(16), 12323–12331.
Pereira, B., Costa-Rosa, L.F.B.P., Bechara, E.J.H., Newsholme, P., Curi, R., 1998. Changes in the TBARs content and superoxide dismutase, catalase and glutathione peroxidase activities in the lymphoid organs and skeletal muscles of adrenodemedullated rats. Braz. J. Med. Biol. Res. 31(6), 827–833.
Rodríguez, E.M., Bigi, R., Medesani, D.A., Stella, V.S., Greco, L.S.L., Moreno, P.A.R., Monserrat, J.M., Pellerano, G.N., Ansaldo, M., 2001. Acute and chronic effects of cadmium on blood homeostasis of an estuarine crab, Chasmagnathus granulata, and the modifying effect of salinity. Braz. J. Med. Biol. Res. 34(4), 509–518.
Salvatori, F., Talassi, C.B., Salzgeber, S.A., Sipinosa, H.S., Bernardi, M.M., 2004. Embryotoxic and long-term effects of cadmium exposure during embryogenesis in rats. Neurotoxicol. Teratol. 26, 673–680.
Song, J., Zhao, F.J., Luo, Y.M., McGrath, S.P., Zhang H., 2004. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut. 128, 307–315.
Tsvetkova, N.M., Pakhomov, O.Y., Serdyuk, S.M., Yakyba, M.S., 2016. Biologichne riznomanittja Ukrajiny. Dnipropetrovs'ka oblast'. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. The Dnipropetrovsk region. Soils. Metalls in the soils]. Lira, Dnipropetrovsk (in Ukrainian).
Uetani, M., Kobayashi, E., Suwazono, Y., Okubo, Y., Honda, R., Kido, T., Nogawa, K., 2005. Selenium, cadmium, zinc, copper, and iron concentrations in heart and aorta of patients exposed to environmental cadmium. B. Environ. Contam. Tox. 75(2), 246–250.
Vlizlo, V.V., Fedoruk, R.S., Ratych, I.B., 2012. Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of investigation in biology, stock-breeding and veterinary]. Spolom, Lviv (in Ukrainian).
Vucic, V., Isenovic, E.R., Adzic, M., Ruzdijic, S., Radojcic, M.B., 2006. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells. Braz. J. Med. Biol. Res. 39(2), 227–236.
Watjen, W., Beyersman, D., 2004. Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometal 17, 65–78.
Published
2016-02-11
Section
Articles