Changes in catalase activity in leaves of woody and bushy plants in the conditions of air pollution by compounds of fluorine, sulfur and nitrogen

  • Y. Prysedskyj Vasyl Stus Donetsk National University
Keywords: plant resistance, integrated air pollution, antioxidant enzymes


Recently environmental pollution by industrial waste products has become a significant environmental factor that essentially limits the vital functions of plants and reduces their species diversity. The antioxidant system is of special importance for tolerance reactions of plants to stressful environmental conditions, in particular, contamination by industrial pollutants. One of the constituents of this system is oxidoreductase, including catalase. Consequently, we have conducted experiments to determine how the nature of the complex compounds of fluorine, nitrogen and sulfur influences catalase activity in leaves of selected species of trees and shrubs. The investigation was made according to the complete factorial experiment that allowed us to study the effect of these pollutants both individually and in combination. We used the iodometric method to determine the level of catalase activity. Statistical analysis of the obtained results was performed by means of dispersion analysis with the comparison according to the Duncan method. The results of the research showed the possible impact of pollutants on the activity of catalase, which depends on the resilience of the plants, structure and duration of potency of the pollutants. With less resilient plant species (Sorbus aucuparia L., Fraxinus lanceolata Borkh.) air pollution with a combination of fluorine, sulfur and nitrogen in most cases caused a reduction of catalase activity. Thus, in S. aucuparia a 5-hour exposure to low concentrations of pollutants (HF – 0.2 ml/m3, NH3 – 1.2 ml/m3, SO2 and H2SO4 – 0.9–1.0 ml/m3) caused an inhibition of catalase activity by 40.5%, and a ten-hour exposure caused a 61.4% inhibition compared with the control plants. With increased concentrations of pollutants  catalase function was inhibited by 35.8–73.6%, depending on the duration of their fumigation. For F. lanceolata, the pollutants’ effect on catalase activity caused a decrease in function of this enzyme by 20–77% compared with non-fumigated plants. In contrast to the less resilient plants, the species resilient against pollution (Ligustrum vulgare L., Quercus robur Sol., Lonicera tatarica L., Eleagnus angustifolia L., Philadelphus coronaria L.) were characterized by absence of possible changes in catalase activity caused by fumigation or by increase in catalase by 11–118%. A significant increase of catalase functions in these species mostly occurs because of the short-term effect (5 hours) of pollutants. In the absence of damage, the enzyme activity of species of variable resilience (Aesculus hippocastanum L., Acer negundo L., Populus simonii Carriere) remained at the level of the control plants. The gas mixture that damages leaves (necrosis) caused catalase functions to decrease by 11–80% compared with the control plants. Therefore, we can state that in the absence of visible damage to plants' enzyme activity either remained unchanged or increased compared with the control plants. Formation of necrosis caused a decrease in catalase functions. The patterns of changes in catalase activity we have identified allow us to conclude that this enzyme plays a significant role in liquidation of damage caused by air pollutants.


Antipov, V.G., 1979. Ustojchivost’ drevesnyx rastenij k promyshlennym gazam [Stability of woody plants for industrial gases]. Nauka i Texnika, Minsk (in Russian).
Bergmaqnn, E., Bender, J., Weigel, H.-J., 1999. Ozone threshold doses and exposure-response relationships for the development of ozone injury symptoms in wild plant species. New Phytol. 144(3), 423–435.
Bobyliov, Y.P., Brygadyrenko, V.V., Bulakhov, V.L., Gaichenko, V.A., Gasso, V.Y., Didukh, Y.P., Ivashov, A.V., Kucheriavyi, V.P., Maliovanyi, M.S., Mytsyk, L.P., Pakhomov, O.Y., Tsaryk, I.V., Shabanov, D.A., 2014. Ekologija [Ecology]. Folio, Kharkiv (in Ukrainian).
Bojko, M.I., Pryseds’kyj, J.H., Vjetrova, O.V., 2014. Velykyj praktykum z fiziolohiji ta biochimiji roslyn (bilky, fermenty, vitaminy, nuklejinovi kysloty) [Large workshop of plant physiology and biochemistry (proteins, enzymes, vitamins, nucleic acids)]. DonNU, Donec’k (in Ukrainian).
Brygadyrenko, V., Ivanyshyn, V., 2015. Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. J. Forest Sci. 61(9), 369–376. >>
Cape, J.N., Petcy, К.Е., 1993. Environmental influences on the development of spruce needle cuticles. New Phytol. 125, 787–799. >>
Czegeny, G., Matai, A., Hide, E., 2016. UV-B effects on leaves – Oxidative stress and acclimation in controlled environments. Plant Sci. 248, 57–63.
Dizengremel, P., 2001. Effects of ozone on the carbon metabolism of forest trees. Plant Physiol. Biochem. 39(9), 729–742. >>
Durga, M., Bharathi, S., Balakrishna Murthy, P., Devasena, T., 2015. Characterization and phytotoxicity studies of suspended particulate matter (SPM) in Chennai urban area. J. Envir. Biol. 36(3), 583–589.
Frei, M., Wissuwa, M., Pariasca-Tanaka, J., Chen, C.P., Sudekum, K-H., Kohno, Y., 2012. Leaf ascorbic acid level – Is it really important for ozone tolerance in rice? Plant Physiol. Biochem. 59, 63–70. >> Ganatsasa, P., Tsakaldimia, M., Zachariadis, G., 2013. Effect of air traffic pollution on seed quality characteristics of Pinus brutia. Environ. Exp. Bot. 74, 157–161. >>
Ghorbanli, M., Bakand, Z., Bakhshikhaniki, G., Bakand, S., 2007. Air pollution effects on the activity of antioxidant enzimes in Nerium oleander and Robinia pseudoacacia plants in Teheran. J. Environ. Health Sci. Eng. 4, 148–156.
Il’kun, G.M., 1971. Gazoustojchivost’ rastenij [Gas resistant of plants]. Naukova Dumka, Kyiv (in Russian).
Il’kun, G.M., 1978. Zagryazniteli atmosfery i rasteniya [Atmospheric pollutants and plants]. Naukova Dumka, Kyiv (in Russian).
Jing, L., Dombinov, V., Shen, S., Wu, Y., Yang, L., Wang, Y., Frei, M., 2016. Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone.Pollut. 210, 397–408. >>
Kim, Y.-H., Lim, S., Han, S.-H., Lee, J.-C., Song, W.-K., Bang, J.-W., Kwon, S.-Y., Lee, H.-S., Kwak, S.-S., 2007. Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiol. Biochem. 45(12), 908–914. >>
Klumpp, G., Furlan, C.M., Domingos, M., Klumpp, A., 2000. Response of stress indicators and growth parameters of Tibouchina pulchra Cogn. exposed to air and soil pollution near the industrial complex of Cubatao, Brazil. Sci. Total Environ. 246(1), 79–91.
Koffi, N.A., Maxime, A.D., Barima, Y.S.S., Dongui, B., 2015. Detoxifing hydrogen peroxide enzimes activity in two plant species exposed to air pollution in Abidjan city (Cote D’ivoire). Int. J. Plant Anim. Environ. Sci. 5(1), 140–145.
Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S., Sandermann, H., 2002. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol. Biochem. 40(6), 567–575. >>
Luma, G.B., Shelpa, B.J., Dell, J.R., Bozzo, G.G., 2016. Oxidative metabolism is associated with physiological disorders in fruits stored under multiple environmental stresses. Plant Sci. 245, 143–152.
Lykholat, Y., Khromyk, N., Ivan’ko, I., Kovalenko, I., Shupranova, L., Kharytonov, M., 2016. Metabolic responses of steppe forest trees to altirude-associated local environmental changes. Agriculture and Forestry 62(2), 163–171. >>
Lykholat, Y.V., Khromykh, N.O., Kovalenko, I.M., Boroday, E.S., 2016. The impact of pollutants on the antioxidant protection of species of the genus Tilia at different developmental stages. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 24(1), 188–192.
Lypa, A.L., 1977. Dendrolohyja z osnovamy aklimatyzaciji [Dendrology with the basics of acclimatization]. Vyssha Shkola, Kyiv (in Ukrainian).
Mandal, M., 2006. Physiological changes in certain test plants under automobile exhaust pollution. J. Environ. Biol. 27(1), 43–47.
Olszyk, D.M., Takemoto, B.K., Poe, M., 1991. Leaf photosynthetic and water relations responses for “Valencia” orange trees exposed to oxidant air pollution. Environ. Exp. Bot. 31(4), 427–436.
Pack, M.R., 1971. Effects of hydrogen fluoride on bean reproduction. J. Air Pollut. Cotitr. Assoc. 21(3), 133–137. >>
Pertti, R., 2001. Changes in urban lichen diversity after a fall in sulphur dioxide levels in the city of Tampere, SW Finland. Ann. Bot. Fenn. 38(4), 295–304.
Popov, V.A., Nehruc’ka, H.M., 1973. Metod shtuchnoji fumihaciji roslyn shkidlyvymy hazamy v toci povitrja [Fumigation method of artificial plants harmful gases in the air flow]. Introdukcija ta Eksperymental’na Ekolohija Roslyn 3, 83–88 (in Ukrainian).
Pryseds’kyj, J.H., 1999. Statystychna obrobka rezul’tativ biolohichnykh eksperymentiv [Statistical analysis of the results of biological experiments]. Juho-Vostok, Doneck (in Ukrainian).
Pryseds’kyj, J.H., 2005. Paket prohram dlja provedennja statystychnoji obrobky rezul’tativ biolohichnych eksperymentiv [The software package for the statistical analysis of the results of biological experiments]. DonNU, Donec’k (in Ukrainian).
Pryseds’kyj, J.H., 2014. Charakterystyka stijkosti derevnych ta chaharnykovych roslyn do zabrudnennja povitrja spolukamy sirky, ftoru ta nitrohenu [Resistance of wood and shrubby plants to air pollution by sulfur, fluorine and nitrogen compounds]. Visn. Charkiv. Univ. Ser. Biol. 21, 162–167 (in Ukrainian).
Rossychina, H., Lycholat, J., Kyrpyta, L., 2011. Aktyvnist’ fermentiv-detoksykatoriv aktyvnych form kysnju hazonoutvorjujuchykh trav za kompleksnoji diji toksykantiv [Activity of enzymesdetoxycators of active oxigen species of lawn forming grasses at complex toxic action]. Visn. Lviv Univ. Ser. Biol. 56, 239–244 (in Ukrainian).
Rossychina-Halycha, H.S., Lycholat, J.V., Lysenko, N.O., 2014. Funkcionuvannja fermentiv antyoksydantnoji systemy v reproduktyvnych orhanach Robinia pseudoacacia L. za umov promyslovoho mista [The functioning of antioxidant system enzymes in the reproductive organs of Robinia pseudoacacia L. in conditions of industrial city]. Pytannja Stepovoho Lisoznavstva ta Lisovoji Rekul’tyvaciji Zemel 43, 45–49 (in Ukrainian).
Rossykhina-Halycha, H.S., Lykholat, Y.V., Vinnychenko, O.M., 2013. Komponenty antyoksydantnoji systemy zakhystu yak pokaznyky stijkosti travianystykh roslyn, shcho zrostaiut u botanichnomu sadu DNU [The components of the antioxidant defense system as indicators of sustainability herb that grow in the botanical garden of DNU]. Visti Biosfernoho Zapovidnyka Askaniia-Nova. 15, 188–194 (in Ukrainian).
Seyyednejad, S.M., Koochak, H., Vaezi, J., 2013. Changes in antioxidative enzymes activity, protein content and ascorbic acid level in Prosopis juliflora exposed to industrial air pollution. Journal of Biology and Today’s World 10, 482–492.
Sharma, G.K., Chander, C., Salemi, L., 1980. Environmental pollution and leaf cuticular variation in kudzu (Pueraria lobata Willd.). Ann. Bot. 45(1), 77–80.
Soda, C., Bussotti, F., Grossoni, P., Barnes, J., Mori, B., Tani, C., 2000. Impacts of urban levels of ozone on Pinus halepensis foliage. Environ. Exp. Bot. 44(1), 69–82. >>
Sutinen, M.-L, Ratio, H., Nivala, V., Olikainen, R., Ritarp, A., 1996. Effects of emissions from coppernickel smelters on the frost hardiness of Pinus sylvestris needles in the subarctic region. New Phytol. 132, 503–512.
Vinnyčenko, O.M., Dolhova, L.H., 2001. Ekofiziolohichni problemy fitocenoziv ta biolohichna aktyvnist’ edafotopiv v umovach technohennych terytorij [Ecophysiological problems of phytocenoses and soil biological activity in terms of man-made areas]. Fiziolohija Roslyn v Ukrajini na mezhi tysjacholit’, 2, 23–36 (in Ukrainian).
Wang, J., Zeng, Q., Zhu, J., Chen, C., Liu, G., Tang, H., 2014. Apoplastic antioxidant enzyme responses to chronic freeair ozone exposure in two different ozonesensitive wheat cultivars. Plant Physiol. Biochem. 82, 183–193. >>
Wuytack, T., Abdelgawad, H., Staelens, J., Asard, H., Boeckx, P., Verheyen, K., Samson, R.,2013. The response of the foliar antioxidant system and stable isotopes (13C and 15N) of white willow to lowlevel air pollution. Plant Physiol. Biochem. 67, 154–161. >>