Modelling the dynamics of total precipitation and aboveground net primary production of fescue-feather grass steppe at Askania Nova according to global climate change scenariosModelling the dynamics of total precipitation and aboveground net primary production of fescue-feather grass steppe at Askania Nova according to global climate change scenarios

  • S. O. Belyakov National University of Kyiv-Mohyla Academy
  • O. P. Gofman Falz-Fein Biosphere Reserve “Askania-Nova”
  • I. G. Vyshenska National University of Kyiv-Mohyla Academy
Keywords: primary production, fescue-feather grass steppe, climate change, regression model, IPCC scenarios, BIOCLIM


This article discusses modelling of Aboveground Net Primary Production (ANPP) of steppe (arid grassland ecosystems) plant species in relation to changes in total precipitation over the previous year at the “Stara” study site, Biosphere Reserve “Askania-Nova”, Khersonregion (Ukraine). To investigate linkages between precipitation and Aboveground Net Primary Production, correlation analysis was chosen and a time series regression analysis was based on the data set for the period 1988–2012. The NPP dependence on quantity of precipitation was found to be more significant for the previous autumn-winter-spring period (AWSP) than for the previous 12 month period. A regression model of ANPP’s dependence on AWSP is proposed. This model was further validated by the authors’ samples of ANPP, collected at the “Stara” study site in 2013–2016. The regression model showed a non-linear (quadratic) dependence of net primary production of zonal and intrazonal plant coenoses and total precipitation for the autumn-winter-spring period for arid grasslands with a coefficient of determination equal to 0.54 and significance level less than 0.05. The non-linear equation for these relations, visualized by a parabola curve, was calculated using the Nonlinear Least-Squares Regression Method. The data set, based on calculated predicted values, using the calculated equation, had a similar dynamic to the historical data on ANPP, but the model could not predict critical values. For this reason, additional studies are required for critical precipitation events. Non-linear response, investigated according to regression analysis, reveals optimal zones of plant growth, depending on the total precipitation level before the vegetation peak. For research areas where the dominant species are the turf grasses Stipa ucrainica P. Smirn., S. capillata L., S. lessingiana Trin. & Rupr., Festuca valesiaca Gaudin, Koeleria cristata (L.) Pers.) the optimal precipitation rates were found to be 350–400 mm during AWSP with ANPP at 350 g/m2. On the basis of the regression model and current forecasts of changes in precipitation rates we made a forecast of net primary production of plant communities for four climate change scenarios (RCP2.6, RCP4.5, RCP6, and RCP8.5) described in the Fifth Assessment of Intergovernmental Panel on Climate Change (IPCC). For this purpose, bioclimate projections of 10 major climate models (The Community Climate System Model Version 4 (CCSM4), GISS-E2-R, HadGEM2-AO, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, MRI-CGCM3, NorESM1-M), used for preparation of the IPCC report, were analyzed and imported to the geographical information system package QGIS. QGIS modelling software was used for geoanalysis and calculation of GIS-layers for Askania-Nova and adjacent arid grasslands. The results of modelling with the 10 climate models were compared and analyzed for each of the four IPCC scenarios, depending on predicted CO2 levels. The presented modelling results showed a trend to growth in AWSP precipitation and NPP for all scenarios up to 2040–2060. The scenarios RCP2.6, RCP4.5, RCP6 predicted the optimum precipitation zone for current plant diversity for the period of 2040–2060 and scenario RCP8.5 predicted an optimum zone peak after 2080. The study confirmed the importance of monitoring the productivity of herbaceous communities in dry steppe ecosystems ofUkraine.


Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevag, A., Seland, O., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720. >>

Brygadyrenko, V. V. (2014a). Influence of moisture conditions on the structure of litter invertebrate communities in shelterbelt and plantation forests in Southern Ukraine. Journal of Bio-Science, 22, 77–88. >>

Brygadyrenko, V. V. (2014b). Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecologica, 41(1), 8–16.

Brygadyrenko, V. V. (2015). Influence of moisture conditions and mineralization of soil solution on structure of litter macrofauna of the deciduous forests of Ukraine steppe zone. Visnyk of Dnipropetrovsk University. Biology, Ecology, 23(1), 50–65. >>

Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K., & Olson, R. (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89, 2117–2126. >>

Drogobych, N. E. (2000). Postpirogennaja dinamika nadzemnoj fitomassy stepnyh fitocenozov prichernomor’ja [Post-pyrogenic dynamics of aboveground biomass of steppe phytocoenosis of Black Sea region]. Stepi Severnoj Evrazii. Orenburg, 148–150 (in Russian).

Dufresne, J. L., Foujols, M. A., & Denvil, S. (2013). Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics, 40(9), 2123–2165. >>

Fay, P. A., Carlisle, J. D, & Knapp, A. K. (2003). Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia, 137(2), 245–251. >>

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., & Zhang, M. (2011). The Community Climate System Model Version. Journal of Climate, 24, 4973–4991. >>

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. >>

Huxman, T. E., Smith, M. D., Fay, P. A, Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small, E. E., & Williams, D. G. (2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651–654. >>

Kul’bachko, Y. L., Didur, O. O., Loza, I. M., Pakhomov, O. E., & Bezrodnova, O. V. (2015). Environmental aspects of the effect of earthworm (Lumbricidae, Oligochaeta) tropho-metabolic activity on the pH buffering capacity of remediated soil (steppe zone, Ukraine). Biology Bulletin, 42, 899–904. >>

Lauenroth, W., & Sala, O. (1992). Long-term forage production of North American shortgrass steppe. Ecological Applications, 2(4), 397–403. >>

Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O’Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., & Wiltshire, A. (2011). The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4, 723–757. >>

Ni, J. (2004). Estimating net primary productivity of grasslands from field bio¬mass measurements in temperate northern China. Plant Ecology, 174–217. >>

Paris, Q. (1992). The Return of von Liebig’s “Law of the Minimum”. Agronomy Journal, 84, 1040–1046. >>

Parton, W. J., Lauenroth, W. K., & Smith, F. M. (1981). Water loss from a shortgrass steppe. Agriculture and Meteorology, 24, 97–109. >>

Paruelo, J., Lauenroth, W., Burke, I., & Sala, O. E. (1999). Grassland precipitati¬on-use efficiency varies across a resource gradient. Ecosystems, 2(1), 64–68. >>

Ponce-Campos, G. E., Moran, M. S., Huete, A., Zhang, Y., Bresloff, C., & Huxman, T. E. (2013). Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature, 494, 349–352. >>

Ramenskij, L. G. (1971). Uchjot i opisanie rastitel’nosti (na osnove proektivnogo metoda): Izbrannye raboty [Accounting and description of vegetation (based on projective method): Selected works], 57–100 (in Russian).

Rodin, L. E., Remezov, N. P., & Bazilevich, N. I. (1968). Metodicheskie ukazanija k izucheniju dinamiki i biologicheskogo krugovorota v fitocenozah [Guidelines for the study of the dynamics and biological cycle in plant communities]. Nauka, Leningrad (in Russian).

Rosenzweig, M. L. (1968). Net primary productivity of terrestrial communities: Predictions from climatological data. American Naturalist, 102, 67–74. >>

Sala, O. E., Parton, W. J., Joyce, L. A., & Lauenroth, W. K. (1988). Primary produc¬tion of the central grassland region of the United States. Ecology, 69, 40–45. >>

Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H., Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G., Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande, A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L., Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind, D., Roma¬nou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev, N., Tsigari¬dis, K., Unger, N., Voulgarakis, A., Yao, M.-S., & Zhang, J. (2014). Confi¬guration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems, 6(1), 141–184. >>

Schuur, E. A. G. (2003). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology, 84, 1165–1170. >>;2

Shapoval, V. V. (2012). Flora sudynnyh roslyn Askanijs’kogo stepu [Flora of vascular plants of Askania steppe]. FOP Andrjejev O. V., Askanija-Nova (in Ukrainian).

Tsvetkova, N. M., Pakhomov, O. Y., Serdyuk, S. M., & Yakyba, M. S. (2016). Biologichne riznomanittja Ukrajiny. Dnipropetrovs'ka oblast'. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. Dnipropetrovsk region. Soils. Metalls in the soils]. Lira, Dnipropetrovsk (in Ukrainian).

Veden’kov, E. P. (1979). K voprosu o vlijanii zapovednogo rezhima na korennuju rastitel’nost’ Askania-Nova [The influence of the protected regime on the root vegetation of Askania Nova]. Aktual’nye Voprosy Sovremennoj Botaniki. Naukova Dumka, Kyiv, 31–35 (in Russian).

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., & Kimoto, M. (2010). Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. Journal of Climate, 23, 6312–6335. >>

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., & Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845–872. >>

Webb, W., Szarek, S., Lauenroth, W., Kinerson, R., & Smith, M. (1978). Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, 59, 1239–1247. >>

Xu, X. M., Li, D. J., & Luo, Y. Q. (2015). Modeled ecosystem responses to intra-annual redistribution and levels of precipitation in a prairie grassland. Ecological Modeling, 297, 33–41. >>

Yang, Y., Fang, J., Ma, W., & Wang, W. (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35, L23710. >>

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T. Y., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., & Kitoh, A. (2012). A new global climate model of the Meteorological Research Institute: MRI-CGCM3. Journal of the Meteorological Society of Japan, 90A, 23–64. >>

Zhou, Y., & Jia, S. (2016). Precipitation as a control of vegetation phenology for temperate steppes in China. Atmospheric and Oceanic Science Letters, 9(3), 162–168. >>

Zhua, K., Chiariellod, N. R., Tobecka, T., Fukamib, T., & Field, C. B. (2016). Nonlinear, interacting responses to climate limit grassland production under global change. Proceedings of the National Academy of Sciences, 113(38), 10589–10594. >>