Screening of strains of soil micromycetes – antagonists of fungal and bacterial plant pathogens

Keywords: antimicrobial effect, Trichoderma spр., biocontrol, plant diseases, phytotoxicity


The antagonistic activity of 23 strains of micromycetes belonging to different taxonomic groups, against phythopathogenic bacteria and fungi was studied. The antagonistic activity of the micromycetes was tested by agar diffusion (the method of blocks). For the determination of the influence of the micromycetes on plants, spring barley seeds were treated by cultural liquid of fungi (dilution 1 : 10) for 24 hours and germinated in Petri dishes on moist filter paper. Two strains Trichoderma longibrachiatum 17 and T. lignorum 14 showed the highest antagonistic activity against the phytopathogenic bacteria and fungi. T. longibrachiatum 17 actively suppressed the growth of fungi Fusarium oxysporum 54201, F. culmorum 50716, F. oxysporum 12, F. moniliforme 23, Cladosporium herbarum 16878, Alternaria alternata 16, Aspergillus niger 25 and bacteria Agrobacterium tumefaciens 8628, Xanthomonas campestris 8003b, Pectobacterium carotovorum 8982, Pseudomonas syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones inhibition of growth were 20.7–38.3 and 14.7–24.7 mm, respectively. The strain of T. lignorum 14 inhibited the growth of fungi F. culmorum 50716, C. herbarum 16878, F. moniliforme 23, A. alternata 16, A. niger 25 and bacteria A. tumefaciens 8628, P. carotovorum 8982, P. syringae pv. atrofaciens 8254, P. syringae pv. lachrymans 7595, zones of inhibition of growth were 14.0–38.7 and 12.3–23.3 mm, respectively. Treatment of spring barley seeds by T. longibrachiatum 17 cultural liquid showed a positive effect on seed germination, both strains T. longibrachiatum 17 and T. lignorum 14 increased the dry weight of the roots (by 17.5% and 22.0%, respectively) and the stems (by 8.0%) of spring barley plants compared with the water-treated controls. The results presented in this article indicate that the strains T. longibrachiatum 17 and T. lignorum 14 can be recommended as promising microbial agents to protect plants from fungal and bacterial diseases.


Abdel-Fattah, G. M., Shabana, Y. M., Ismail, A. E., & Rashad, Y. M. (2007). Trichoderma harzianum: A biocontrol agent against Bipolaris oryzae. Mycopathologia, 164(2), 81–89.

Asad, S. A., Ali, N., Hameed, A., Khan, S. A., Ahmad, R., Bilal, M., Shahzad, M., & Tabassum, A. (2014). Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Polish Journal of Microbiology, 63(1), 95–103.

Banani, H., Marcet-Houben, M., Ballester, A. R., Abbruscato, P., González-Candelas, L., Gabaldón, T., & Spadaro, D. (2016). Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics, 17, 19.

Basler, R. (2016). Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat. PeerJ, 4, e2143.

Consolo, V. F., Monaco, C. I., Cordo, C. A., & Salerno, G. L. (2012). Characteri-zation of novel Trichoderma spp. isolates as a search for effective bio-controllers of fungal diseases of economically important crops in Argentina. World Journal of Microbiology and Biotechnology, 28(4), 1389–1398.

De Palma, M., D'Agostino, N., Proietti, S., Bertini, L., Lorito, M., Ruocco, M., Caruso, C., Chiusano, M. L., & Tucci, M. (2016). Suppression subtractive hybridization analysis provides new insights into the tomato (Solanum lycopersicum L.) response to the plant probiotic microorganism Trichoderma longibrachiatum MK1. Journal of Plant Physiology, 190, 79–94.

Domsh, K. H., Gams, W., & Andersen, T. H. (2007). Compendium of soil fungi. IHW-Verlag, Eching.

Egorov, N. S. (2004). Osnovy uchenija ob antibiotikah [Fundamentals of the doctrine of antibiotics]. Nauka, Moscow (in Russian).

Horshchar, O. A. (2013). Osnovni zbudnyky plisnjavinnja ta i'h fitotoksychna dija na prorastajuche nasinnja jachmenju jarogo [Main mold pathogens and their phytotoxic effect on the germinating seed spring barley]. Bjuleten' Instytutu Sil's'kogo Gospodarstva Stepovoi' Zony Ukrai'ny, 4, 70–73 (in Ukrainian).

Ibrahim, S. R. M., Abdallah, H. M., Elkhayat, E. S., Al Musayeib, N. M., Asfour, H. Z., Zayed, M. F, & Mohamed, G. A. (2017). Fusaripeptide A: New antifungal and antimalarial cyclodepsipeptide from the endophytic fungus Fusarium sp. Journal of Asian Natural Products Research, 27, 1–11.

Iutynska, G. O., & Ponomarenko, S. P. (eds.), 2010. Bioreguljacija mikrobno-rastitel'nyh sistem [Bioregulation of microbial-plant systems]. Nichlava, Kiev (in Russian).

Kaushal, K. S., Rao, D. V., & Amla, B. (2013). In vitro antimicrobial activities of endophytic fungi isolates from medicinal tree – Melia azedarach L. Journal of Microbiology Research, 3(1), 19–24.

Kurdish, І. К. (2011). Perspektiva zastosuvannja mіkrobіv-antagonіstіv u zahistі agroekosistem vіd fіtopatogenіv [Prospects for microbial antagonists use in protection of agroecosystems from phytopathogenes] Sіl's'kogospodars'ka Mіkrobіologіja, 13, 23–41 (in Ukrainian).

Oldenburg, E., Höppner, F., Ellner, F., & Weinert, J. (2017). Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Research, 1–16.

Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., & Kamil, D. (2015). Screening of different Trichoderma species against agriculturally important foliar plant pathogens. Journal of Environmental Biology, 36(1), 191–198.

Ruocco, M., Lanzuise, S., Lombardi, N., Woo, S. L., Vinale, F., Marra, R., Varlese, R., Manganiello, G., Pascale, A., Scala, V., Turrà, D., Scala, F., & Lorito, M. (2015). Multiple roles and effects of novel Trichoderma hydrophobin. Molecular Plant-Microbe Interactions, 28(2), 167–179.

Sawant, I. S. (2014). Trichoderma – foliar pathogen interactions. The Open Mycology Journal, 8, 58–70.

Shi, W., Tan, Y., Wang, S., Gardiner, D. M., De Saeger, S., Liao, Y., Wang, C., Fan, Y., Wang, Z., & Wu, A. (2016). Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling. Toxins (Basel), 9(1), E6.

Van Bohemen, A. I., Zalouk-Vergnoux, A., Poirier, L., Phuong, N. N., Inguimbert, N., Ben Haj Salah, K., Ruiz, N., & Pouchus, Y. F. (2016). Development and validation of LC-MS methods for peptaibol quantification in fungal extracts according to their lengths. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1009–1010, 25–33.

Vizcaíno, J. A., Sanz, L., Basilio, A., Vicente, F., Gutiérrez, S., Hermosa, M. R., & Monte, E. (2005). Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 109(12), 1397–1406.

Zhang, F., Ge H., Zhang F., Guo, N., Wang, Y., Chen, L., Ji, X., & Li, C. (2016). Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry, 100, 64–74.

Zhang, S. W., Xu, B. L., Xue, Y. Y., Liang, Q. L., & Liu, J. (2016). Efficiency of Trichoderma longibrachiatum T6 in the control of Meloidogyne incognita and its rhizosphere colonization in cucumber. Ying Yong Sheng Tai Xue Bao, 27(1), 250–254.