Morphology and ecological characteristics of Sparganium × longifolium (Typhaceae) in the Central part of European Russia

Keywords: bur-reed, hybrid, Sparangium gramineum, Sparangium emersum, eutrophication, habitat


The increasing impact of anthropogenic factors and climate change affect the growth of a number of taxa of hybrid nature. These taxa are widespread among various taxonomic groups of aquatic and semi-aquatic plants. The genus Sparganium L. В is not an exception. In that regard, the aim of this study is to conduct biomorphological investigation of Sparganium × longifolium Turcz. ex Ledeb., evaluate qualitative and quantitative criteria for the hybrid similarities and differences with its parental species, as well as to analyze data on its habitat characteristics. Samples were collected in 2014–2016 from waterbodies in European Russia (Tver and Yaroslavl oblasts). In the study on biomorphology of S. × longifolium we used live and fixed materials, as well as herbarium funds of IBIW, MXA and MW. To establish and specify taxonomic features of the hybrid under study, indicating to its similarity with a certain ancestral species, our data on the morphology and ecology of S. emersum Rehm. and S. gramineum Georgi. are used. During field studies, the type of water object where the hybrid was detected, ecological characteristics of its habitat (type of soil, depth, water temperature and pH) are determined; the list of taxa which enter into the cenosis composition is compiled. The biomorphological investigation of S. × longifolium shows that by life form this hybrid, as well as its parental species, is a vegetative-mobile evidently-polycentric annual or biennial plant of vegetative origin with a racemose root system. The following should be attributed to the characteristic features justifying the hybrid origin of S. × longifolium: 1) a wider, slightly carinated lamina (as in S. emersum); 2) a branched inflorescence (as in S. gramineum); 3) the lower covering leaf of inflorescence, often exceeding the total length of the latter; 4) fruits with a straight (as in S. emersum) as well as bent (as in S. gramineum) style. Interestingly, some populations of S. × longifolium are rich in terate forms that can be explained by back crossing with one of the parental species or pleiotropic mutation(s). It is established that S. × longifolium is not widespread in European Russia, is a typically freshwater species, occurring in the littoral zone of mesotrophic and dystrophic waterbodies (usually in lakes of glacier origin). At present, its appearance in lake ecosystems is due to accelerated eutrophication caused by increasing human activities. Perhaps earlier this hybrid formation occurred in peripheral zones of the range of S. gramineum under cyclic climate changes. Observations suggest that S. × longifolium exceeds S. gramineum in ecological potential. At the same time, habitat features of the latter have an effect on the hybrid’s distribution potential (limitation of habitat spectrum), which is hardly exceeds S. emersum in its ecological and coenotic characteristics. 


Arrigo, N., Bétrisey, S., Graf, L., Bilat, J., Gerber, E., & Kozlowski, G. (2016). Hybridization as a threat in climate relict Nuphar pumila (Nymphaeaceae). Biodiversity and Conservation, 25(10), 1863–1877.

Ball, D., & Freeland, J. (2013). Synchronous flowering times and asymmetrical hybridization in Typha latifolia and T. angustifolia in northeastern North America. Aquatic Botany, 104, 224–227.

Barykina, R. P., Veselova, T. D., Devyatov, A. G., Dzhalilova, H. H., Ilina, G. M., & Chubatova, N. V. (2004). Spravochnik po botanicheskoy mikrotekhnike: Osnovy i metody [Handbook on Botanical micro-technology: Basics and methods]. Izatelstvo MGU, Moscow (in Russian).

Belyakov, E. A., & Lapirov, A. G. (2015). Fruit germination of some representatives of the family Sparganiaceae Rudolphi under laboratory conditions. Inland Water Biology, 8(1), 33–37.

Belyakov, E. A., & Lapirov, A. G. (2015). Modular and structural-functional organization of G. sparganium L. species in different ecological conditions. Contemporary Problems of Ecology, 8(5), 647–659.

Bobrov, A. A., Mochalova, O. A., & Chemeris, E. V. (2014). Zametki o vodnyh i pribrezhno-vodnyh sosudistyh rasteniyah Kamchatki [Notes on aquatic and semiaquatic vascular plants of Kamchatka]. Botanicheskii Zhurnal, 99(9), 1025–1043 (in Russian).

Bobrov, A. A., Zalewska-Gałosz, J., Jopek, M., & Movergoz, E. A. (2015). Ranunculus schmalhausenii (section Batrachium, Ranunculaceae), a neglected water crowfoot endemic to Fennoscandia – A case of rapid hybrid speciation in postglacial environment of North Europe. Phytotaxa, 233(2), 101–138.

Borisova, E. A., Shcherbakov, A. V., Shilov, M. P., & Kurganov, A. A. (2013). Flora ozer Savinskogo rayona Ivanovskoy oblasti [Lake flora of the Savino district of the Ivanovo region]. Bulletin of Bryansk dpt. of RBS, 2(2), 20–27 (in Russian).

Borsch, T., Wiersema, J. H., Hellquist, C. B., Löhne, C., & Govers, K. (2014). Speciation in North American water lilies: Evidence for the hybrid origin of the newly discovered Canadian endemic Nymphaea loriana sp. nov. (Nymphaeaceae) in a past contact zone. Botany, 92(12), 867–882.

Campbell, D. R., & Wendlandt, C. (2013). Altered precipitation affects plant hybrids differently than their parental species. American Journal of Botany, 100, 1322–1331.

Chepinoga, V. V. (2015). Flora i rastitel'nost vodoemov Baykalskoy Sibiri [Flora and vegetation of waterbodies in Baikal Siberia]. V. B. Sochava Institute of Geography SB RAS, Irkutsk (in Russian).

Cook, C. D. K., & Nicholls, M. S. (1986). A monographic study of the genus Sparganium. Part 1: Subgenus Xanthosparganium. Botanica Helvetica, 96(2), 213–267.

Cook, C. D. K., & Nicholls, M. S. (1987). A monographic study of the genus Sparganium. Part 2: Subgenus Sparganium. Botanica Helvetica, 97(1), 1–44.

Dubovik, D. V., Skuratovich, A. N., & Tretjakov, D. I. (2012). Novye mestona hozhdeniya nekotoryh redkih i ohranyaemyh vidov sosudistyh rastenij dlya flory Belarusi [About new and rare species of vascular plants for the flora of Bela rus]. In: Botany (research): Collection of scientific papers 41, 3–20 (in Russian).

Dyukina, G. R., & Kapitonova, O. A. (2005). Genus Typha L. in Udmurtia: taxonomical structure, distribution, ecology. Bulletin of Udmurt University. Biology and Earth Sciences, 10, 41–50.

Freeland, J., Ciotir, C., & Kirk, H. (2013). Regional differences in the abundance of native, introduced, and hybrid Typha spp. in Northeastern North America influence wetland invasions. Biological Invasions, 15(12), 2651–2665.

Gałosz, J. Z., & Ronikier, M. (2012). Molecular evidence for two rare Potamogeton natans hybrids with reassessment of Potamogeton hybrid diversity in Poland. Aquatic Botany, 103, 15–22.

Grant, V. (1984). Vidoobrazovanie u rasteniy [Plant speciation]. Mir, Moscow (in Russian).

Iida, S., Kadono, Y., & Kosuge, K. (2013). Maternal effects and ecological divergence in aquatic plants: A case study in natural reciprocal hybrids between Potamogeton perfoliatus and P. wrightii. Plant Species Biology, 28, 3–11.

Ito, Y., Tanaka, N., Kim, C., Kaul, R. B., & Albach, D. C. (2016). Phylogeny of Sparganium (Typhaceae) revisited: Non-monophyletic nature of S. emersum sensu lato and resurrection of S. acaule. Plant Systematics and Evolution, 302(1), 129–135.

Ito, Y., Tanaka, N., Pooma, R., & Tanaka, N. (2014). DNA barcoding reveals a new record of Potamogeton distinctus (Potamogetonaceae) and its natural hybrids, P. distinctus × P. nodosus and P. distinctus × P. wrightii (P. × malainoides) from Myanmar. Biodiversity Data Journal, 2, 1–17.

Kapitonova, O. A., Platunova, G. R., & Kapitonov, V. I. (2015). The Distribution, biological and ecological features of Typha shuttleworthii (Typhaceae) in the Vyatka-Kama Cis-Urals, Russia. American Journal of Plant Sciences, 6, 284–288.

Kaplan, Z. (2007). First record of Potamogeton × salicifolius for Italy, with isozyme evidence for plants collected in Italy and Sweden. Plant Biosystems, 141(3), 344–351.

Kaplan, Z., & Fehrer, J. (2013). Molecular identification of hybrids from a former hot spot of Potamogeton hybrid diversity. Aquatic Botany, 105, 34–40.

Liu, F., Zhang, X. -L., Wang, Q. -F., Liu, H., Wang, G. -Xi, & Li, W. (2013). Resource allocation among sexual, clonal reproduction and vegetative growth of two Potamogeton species and their hybrid: Adaptability of the hybrid in relation to its parents. Journal of Systematics and Evolution, 51(4), 461–467.

Nierbauer, K. U., Kanz, B., & Zizka, G. (2014). The widespread naturalisation of Nymphaea hybrids is masking the decline of wild-type Nymphaea alba in Hesse, Germany. Flora – Morphology Distribution Functional Ecology of Plants, 209(2), 122–130.

Notov, A. A., Garin, E. V., Belyakov, E. A., Zueva, L. V., & Notov, V. A. (2016). Floristicheskie nahodki na ozyorah yugo-zapadnoy chasti Valdayskoy vozvyshennosti (Tverskaya oblast) [Floristic finds on the lakes of the south-west of the Valdai hills (Tver region)]. Herald of Tver State University Series: Biology and Ecology, 3, 92–103 (in Russian).

Padgett, D. J., Les, D. H., & Crow, G. E. (1998). Evidence for the hybrid origin of Nuphar × rubrodisca (Nymphaeaceae). American Journal of Botany, 85(10), 1468–1476.

Papchenkov, V. G. (2007). Gibridy i maloizvestnye vidy vodnyh rasteniy [Hybrids and little known species of aquatic plants]. Aleksandr Rutman, Yaroslavl (in Russian).

Pedersen, A. T. M., Nowak, M. D., Brysting, A. K., Elven, R., & Bjorå, C. S. (2016). Correction: Hybrid origins of Carex rostrate var. borealis and C. stenolepis, two problematic taxa in Carex section Vesicariae (Cyperaceae). PLoS ONE, 11(10), 1–18.

Preston, C. D., & Pearman, D. A. (2015). Plant hybrids in the wild: Evidence from biological recording. Biological Journal of the Linnean Society, 115, 555–572.

Rotert, V. А. (1910). Übersicht der sparganien des Russischen reiches (zugleich Europa's). Works of the Botanical Garden of Tartu University, 11(1), 11–32.

Savinykh, N. P., & Cheryomushkina, V. A. (2015). Biomorphology: Current status and prospects. Contemporary Problems of Ecology, 8(5), 541–549.

Savinykh, N. P., Shabalkina, S. V., & Lelekova, E. V. (2015). Biomorphological adaptations of helophytes. Contemporary Problems of Ecology, 8(5), 550–559.

Seregin, A. P. (2012). Flora Vladimirskoy oblasti: Konspekt i atlas [Flora of Vladimir oblast, Russia: Checklist and atlas]. Grif i K, Tula (in Russian).

Shimko, I. I., & Dzhus, M. A. (2011). Dopolneniya k spisku vidov vysshih sosudistyh rasteniy flory Belorusskogo Poozerya [Additions to the species list of vascular plants of the flora of the Belarusian Poozerie]. In: Biological Diversity of Belarusian Poozerye. Belarusian State University Named after P. M. Masherov, Vitebsk (in Russian).

Sulman, J. D., Drew, B. T., Drummond, C., Hayasaka, E., & Sytsma, K. J. (2013). Systematics, biogeography, and character evolution of Sparganium (Typhaceae): Diversification of a widespread, aquatic lineage. American Journal of Botany, 100(10), 2023–2039.

Taylor, S. A., Larson, E. L., & Harrison, R. G. (2015). Hybrid zones: Windows on climate change. Trends in Ecology & Evolution, 30(7), 398–406.

Vallejo-Marin, M., & Hiscock, S. J. (2016). Hybridization and hybrid speciation under global change. New Phytologist, 211, 1170–1187.

Wiecław, H., & Koopman, J. (2013). Numerical analysis of morphology of natural hybrids between Carex hostiana and the members of Carex flava agg. (Cyperaceae). Nordic Journal of Botany, 31, 464–472.

Więcław, H., & Wilhelm, M. (2014). Natural hybridization within the Carex flava complex (Cyperaceae) in Poland: Morphometric studies. Annales Botanici Fennici, 51(3), 129–147.

Yang, T., Zhang, T.-I., Guo, Y.-H., & Liu, X. (2016). Identification of hybrids in Potamogeton: Incongruence between plastid and its regions solved by a novel barcoding marker PHYB. PLoS ONE, 11(11), 1–12.

Zalewska-Gałosz, J., Jopek, M., & Ilnicki, T. (2014). Hybridization in Batrachium group: Controversial delimitation between heterophyllous Ranunculus penicillatus and the hybrid Ranunculus fluitans × R. peltatus. Aquatic Botany, 120, 160–168.

Zapfe, L., & Freeland, J. R. (2015). Heterosis in invasive F1 cattail hybrids (Typha × glauca). Aquatic Botany, 125, 44–47.