Influence of ecological farming on the community structure of epigeic arthropods in crops Triticum aestivum and T. spelta

  • V. Langraf Constantine the Philosopher University in Nitra
  • K. Petrovičová University of Agriculture in Nitra
  • J. Schlarmannová Constantine the Philosopher University in Nitra
  • P. Cenke University of Agriculture in Nitra
  • V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: invertebrates; abundance; diversity; agroecosystems; ecotones; field margins.


Soil is an irreplaceable natural resource that enables the production of food and raw materials, forms agricultural and forest landscapes, filters and maintains water, ensures the cycle of substances in the ecosystem and contributes to maintaining biodiversity. Agricultural intensification is one of the most important factors for biodiversity loss. Spatial dispersion of epigeic arthropods reflects the ecological status of habitats and points to its quality. The aim of our research was to point out the differences in epigeic arthropod diversity in the examined crops Triticum aestivum, T. spelta and the influence of their ecotones on epigeic arthropods. Between the years 2019 to 2021 an investigation using the pitfall trap method recorded 5,232 individuals belonging to 13 taxonomic groups. The crop T. aestivum was represented by 2493 individuals and 13 taxa while in T. spelta we recorded 2739 individuals and 11 taxa. We observed significantly more taxa in the crop T. aestivum than in the crop T. spelta. We also confirmed the ecotone rule only for the T. aestivum crop. We confirmed the significant influence of crops and environmental variables (pH, potassium, phosphorus, nitrogen) on the spatial dispersion of individuals around pitfall traps. On the basis of our results, both ecological farming and their ecotone systems are important for epigeic arthropods and with topical and trophic conditions, which is important for the production of biomass and also affects crop. In any anthropogenic activity, it is important to give priority to less invasive procedures with non-toxic effects on organisms and to use effective technologies in land management.


Bai, D., Kang, Y., Ruan, S., & Wang, L. (2021). Dynamics of an intraguild predation food web model with strong Allee effect in the basal prey. Nonlinear Analysis: Real World Applications, 58, 103206.

Baranová, B., Manko, P., & Jászay, T. (2015). Waste dumps as local biodiversity hotspots for soil macrofauna and ground beetles (Coleoptera: Carabidae) in the agricultural landscape. Ecological Engineering, 81, 1–13.

Beljaev, V. I., Volnov, V. V., Sokolova, L. V., Kuznecov, V. N., & Matsyura, A. V. (2017). Effect of sowing techniques on the agroecological parameters of cereal crops. Ukrainian Journal of Ecology, 7(2), 130–136.

Berg, M. P., & Bengtsson, J. (2007). Temporal and spatial variability in soil food web structure. Oikos, 116(11), 1789–1804.

Bosem Baillod, A., Tscharntke, T., Clough, Y., & Batáry, P. (2017). Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. Journal of Applied Ecology, 54(6), 1804–1813.

Brygadyrenko, V. V. (2015a). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192.

Brygadyrenko, V. V. (2015b). Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera, Carabidae) against the background of eight ecological factors. Folia Oecologica, 42(2), 75–88.

Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68.

Brygadyrenko, V. V., & Reshetniak, D. Y. (2014). Trophic preferences of Harpalus rufipes (Coleoptera, Carabidae) with regard to seeds of agricultural crops in conditions of laboratory experiment. Baltic Journal of Coleopterology, 14(2), 179–190.

Campbell, N. A., & Reece, J. B. (2006). Biology. Computer Press, Brno.

Coleman, D. C., Crossley, D. A., & Hendrix, P. F. (2004). Fundamentals of soil Ecology. Academic Press.

Diehl, E., Mader, V. L., Wolters, V., & Birkhofer, K. (2013). Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia, 173(2), 579–589.

Diehl, E., Wolters, V., & Birkhofer, K. (2011). Arable weeds in organically managed wheat fields foster carabid beetles by resource- and structure-mediated effects. Arthropod-Plant Interactions, 6(1), 75–82.

Djoudi, E. A., Marie, A., Mangenot, A., Puech, C., Aviron, S., Plantegenest, M., & Pétillon, J. (2018). Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agriculture, Ecosystems and Environment, 259, 98–110.

Dobrovodská, M., Kanka, R., David, S., Kollár, J., Špulerová, J., Štefunková, D., Mojses, M., Petrovič, F., Krištín, A., Stašiov, S., Halada, L., & Gajdoš, P. (2019). Assessment of the biocultural value of traditional agricultural landscape on a plot-by-plot level: Case studies from Slovakia. Biodiversity and Conservation, 28(10), 2615–2645.

Donohue, I., Petchey, O. L., Kéfi, S., Génin, A., Jackson, A. L., Yang, Q., & O’Connor, N. E. (2017). Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology, 23(8), 2962–2972.

Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.

FAO (2021). Tracking progress on food and agriculture-related SDG indicators. FAO, Rome.

Fedyushko, M. P., & Babchenko, A. V. (2021). Temporal dynamics of the terrestrial invertebrate community under conditions of land reclamation. Agrology, 4(1), 21–32.

Ganser, D., Knop, E., & Albrecht, M. (2019). Sown wildflower strips as overwintering habitat for arthropods: Effective measure or ecological trap? Agriculture, Ecosystems and Environment, 275, 123–131.

Guo, X., Bian, Z., Wang, S., Wang, Q., Zhang, Y., Zhou, J., & Lin, L. (2020). Prediction of the spatial distribution of soil arthropods using a random forest model: A case study in Changtu County, Northeast China. Agriculture, Ecosystems and Environment, 292, 106818.

Haddaway, N. R., Brown, C., Eggers, S., Josefsson, J., Kronvang, B., Randall, N., & Uusi-Kämppä, J. (2016). The multifunctional roles of vegetated strips around and within agricultural fields. A systematic map protocol. Environmental Evidence, 5, 18.

Harlio, A., Kuussaari, M., Heikkinen, R. K., & Arponen, A. (2019). Incorporating landscape heterogeneity into multi-objective spatial planning improves biodiversity conservation of semi-natural grasslands. Journal for Nature Conservation, 49, 37–44.

Häussler, J., Barabás, G., & Eklöf, A. (2020). A Bayesian network approach to trophic metacommunities shows that habitat loss accelerates top species extinctions. Ecology Letters, 23(12), 1849–1861.

Hazarika, S., Kumar, M., Thakuria, D., & Bordoloi, L. J. (2013). Organic farming: Reality and concerns. Indian Journal of Hill Farming, 26(2), 88–97.

Javoreková, S., Králiková, A., Labuda, R., Labudová, S., & Maková, J. (2008). Soil biology in agroecosystems. SPU, Nitra.

Jeanneret, P., Schüpbach, B., Pfiffner, L., & Walter, T. (2003). Arthropod reaction to landscape and habitat features in agricultural landscapes. Landscape Ecology, 18, 253–263.

Karthik, V., Periyasamy, S., Beula, I., & Tatek, T. (2022). Restoration of contaminated agricultural soils. In: Kapoor, R. T., Treichel, H., & Shah, M. P. (Eds.). Biochar and its application in bioremediation. Springer Singapore. Pp. 381–401.

Kleijn, D., & Snoeijing, G. I. J. (1997). Field boundary vegetation and the effects of agrochemical drift: Botanical change caused by low levels of herbicide and fertilizer. The Journal of Applied Ecology, 34(6), 1413–1425.

Kozak, V. M., Romanenko, E. R., & Brygadyrenko, V. V. (2020). Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosystems Diversity, 28, 272–280.

Lázaro, A., & Alomar, D. (2019). Landscape heterogeneity increases the spatial stability of pollination services to almond trees through the stability of pollinator visits. Agriculture, Ecosystems and Environment, 279, 149–155.

Liu, R. T., Zhu, F., & Steinberger, Y. (2015). Effect of shrub microhabitats on aboveground and belowground arthropod distribution in a desertified steppe ecosystem. Polish Journal of Ecology, 63(4), 534–548.

Lykhovyd, P. V. (2021). Seasonal dynamics of normalized difference vegetation index in some winter and spring crops in the South of Ukraine. Agrology, 4(4), 187–193.

Magura, T., Ferrante, M., & Lövei, L. G. (2020). Only habitat specialists become smaller with advancing urbanization. Global Ecology and Biogeography, 29(11), 1978–1987.

Majeed, W., Rana, N., Koch, E. B. D. A., & Nargis, S. (2020). Seasonality and climatic factors affect diversity and distribution of arthropods around wetlands. Pakistan Journal of Zoology, 52(6), 2135–2144.

Martin, E. A., Seo, B., Park, C.-R., Reineking, B., & Steffan-Dewenter, I. (2016). Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecological Applications, 26(2), 448–462.

Michalko, R., Pekár, S., Dul’a, M., & Entling, M. H. (2019). Global patterns in the biocontrol efficacy of spiders: A meta‐analysis. Global Ecology and Biogeography, 28(9), 1366–1378.

New, T. R. (2005). Invertebrate conservation and agricultural ecosystems. Cambridge University Press, Cambridge.

Nowakowski, M., & Pywell, R. F. (2016). Habitat creation and management for pollinators. Centre for Ecology and Hydrology, Wallingford.

Pardon, P., Reheul, D., Mertens, J., Reubens, B., De Frenne, P., De Smedt, P., Proesmans, W., Van Vooren, L., & Verheyen, K. (2019). Gradients in abundance and diversity of ground dwelling arthropods as a function of distance to tree rows in temperate arable agroforestry systems. Agriculture, Ecosystems and Environment, 270–271, 114–128.

Porhajašová, J., Babošová, M., Noskovič, J., & Ondrišík, P. (2018). Long-term developments and biodiversity in carabid and staphylinid (Coleoptera: Carabidae and Staphylinidae) fauna during the application of organic fertilizers under agroecosystem conditions. Polish Journal of Environmental Studies, 27(5), 2229–2235.

Porhajašová, J., Noskovič, J., Rakovská, A., Babošová, M., & Čeryová, T. (2015). Biodiversity and dynamics of occurence of epigeic groups in different types of farming. Acta Horticulturae et Regiotectuare, 18(1), 5–10.

Purchart, L., & Kula, E. (2007). Content of heavy metals in of field ground beetles (Coleoptera, Carabidae) with respect to selected ecological factors. Polish Journal of Ecology, 55(2), 305–314.

Rodríguez-Gasol, N., Alins, G., Veronesi, E. R., & Wratten, S. (2020). The ecology of predatory hoverflies as ecosystem-service providers in agricultural systems. Biological Control, 151, 104405.

Schierwater, B., & DeSalle, R. (2021). Invertebrate zoology: A tree of life approach. CRC Press, Boca Raton.

Schuster, N. R., Peterson, J. A., Gilley, J. E., Schott, L. R., & Schmidt, A. M. (2019). Soil arthropod abundance and diversity following land application of swine slurry. Agricultural Sciences, 10(2), 150–163.

Simão, F. C. P., Carretero, M. A., do Amaral, M. J. A., Soares, A. M. V. M., & Mateos, E. (2015). Composition and seasonal variation of epigeic arthropods in field margins of NW Portugal. Turkish Journal of Zoology, 39, 404–411.

Smith, J., Potts, S. G., Woodcock, B. A., & Eggleton, P. (2007). Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? Journal of Applied Ecology, 45(1), 269–278.

Sunderland, K., & Samu, F. (2000). Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: A review. Entomologia Experimentalis et Applicata, 95(1), 1–13.

Ter Braak, C. J. F., & Šmilauer, P. (2012). Canoco reference manual and user’s guide: Software for ordination. Vers. 5.0. Microcomputer Power, Ithaca, New York.

Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin‐Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771.

Tkalich, Y. I., Tsyliuryk, O. І., Rudakov, Y. M., & Kozechko, V. І. (2021). Efficiency of post-emergence (“insurance”) herbicides in soybean crops of the Northern Steppe of Ukraine. Agrology, 4(4), 165–173.

Tsyliuryk, O. I., Tkalich, Y. I., Honchar, N. V., & Kozechko, V. I. (2021). Effectiveness of soil-applied and post-emergence herbicides in crops of scarlet grosbeak (Erythrina erythrina) of the Northern Steppe of Ukraine. Agrology, 4(2), 85–92.

Wollni, M., & Andersson, C. (2014). Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecological Economics, 97, 120–128.

Zhao, H., Li, J., Guo, L., & Wang, K. (2020). Crop diversity at the landscape level affects the composition and structure of the vegetation-dwelling arthropod communities in naked oat (Avena chinensis) fields. International Journal of Environmental Research and Public Health, 18(1), 30.


Most read articles by the same author(s)