Assessment of soil quality in agroecosystems based on soil fauna

  • V. Langraf Constantine the Philosopher University in Nitra
  • K. Petrovičová University of Agriculture in Nitra
  • J. Schlarmannová Constantine the Philosopher University in Nitra
  • S. David Constantine the Philosopher University in Nitra
  • T. A. Avtaeva Chechen State Pedagogical University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: soil arthropods; index QBS; agrosystems; diversity; soil animals.


Soil arthropods respond sensitively to land management practices and correlate with beneficial soil functions. The aim of this research was to determine soil quality using the QBS index in different types of crops and influence of soil variables (pH soil, soil moisture, potassium, phosphorus and nitrogen) on soil arthropods. Between the years 2018 and 2020, we studied different types of crops (Brassica napus, Pisum sativum, Triticum aestivum, T. spelta, Zea mays, Grass mixture and Hordeum vulgare) and recorded 14 taxa. Our results suggest a higher QBS index value in crops grass mixture, Pisum sativum, Triticum aestivum, T. spelta. The EMI value grew with increasing values of soil moisture, soil pH, phosphorus, potassium and nitrogen; indicating the presence of soil arthropods occurring in higher quality soil. Our results suggest that agricultural intensification affects soil arthropods, which are important for the production of biomass, which also affects crop yields.


Alekseev, S. K., & Ruchin, A. B. (2020). Fauna and abundance of ground beetle (Coleoptera, Carabidae) in pine forests. Entomology and Applied Science Let-ters, 7(1), 1–9.

Aspetti, G. P., Boccelli, R., Ampollini, D., Del Re, A. A. M., & Capri, E. (2010). Assessment of soil-quality index based on microarthropods in corn cultivation in Northern Italy. Ecological Indicators, 10(2), 129–135.

Bote, P. J., & Romero, A. J. (2012). Epigeic soil arthropod abundance under different agricultural land uses. Spanish Journal of Agricultural Research, 10(1), 55–61.

Brygadyrenko, V. V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192.

Brygadyrenko, V. V. (2015a). Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera, Carabidae) against the back-ground of eight ecological factors. Folia Oecologica, 42(2), 75–88.

Brygadyrenko, V. V. (2015b). Parameters of ecological niches of Badister, Licinus and Panagaeus (Coleoptera, Carabidae) species measured against eight ecologi-cal factors. Baltic Journal of Coleopterology, 15(2), 137–154.

Brygadyrenko, V. V. (2016). Effect of canopy density on litter invertebrate commu-nity structure in pine forests. Ekológia (Bratislava), 35(1), 90–102.

Brygadyrenko, V. V., & Reshetniak, D. Y. (2014). Trophic preferences of Harpalus rufipes (Coleoptera, Carabidae) with regard to seeds of agricultural crops in conditions of laboratory experiment. Baltic Journal of Coleopterology, 14(2), 179–190.

Coleman, D. C., & Wall, D. H. (2015). Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Chapter 5. In: Paul, E. A. (Ed.). Soil microbiology, ecology, and biochemistry. 4th ed. Academic Press, New York. Pp. 111‒149.

Da Silva, P. M., Carvalho, F., Dirilgen, T., Stone, D., Cramer, R., Bolger, T., & Sousa, J. P. (2016). Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology, 97, 69–77.

Fazekašová, D., & Bobuľovská, L. (2012). Soil organisms as an indicator of quality and environmental stress in the soil ecosystem. Životné Prostredie, 46(2), 103–106.

Gardi, C., Jacomini, C., Menta, C., & Parisi, V. (2003). Evaluation of land use and crop management impacts on soil quality: Application of QBS methods. In: Francaviglia, R. (Ed.). Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis. Proceedings from an OECD Expert Meeting on Soil Erosion and Soil Biodiversity Indicators, Rome.

Gilley, J. E., Doran, J. W., & Eghball, B. (2001). Tillage and fallow effects on se-lected soil quality characteristics of former conservation reserve program sites. Journal of Soil and Water Conservation, 56(2), 126–132.

Holecová, M., Lukáš, J., & Harakaľová, E. (2003). Mravce (Hymenoptera, Formicidae) dubovo-hrabových lesov v okolí Bratislavy (JZ Slovensko). Folia Faunistica Slovaca, 8, 63–69.

Kotroczó, Z., Juhos, K., Biró, B., Kocsis, T., Pabar, S. A., Varga, C., & Fekete, I. (2020). Effect of detritus manipulation on different organic matter decomposi-tions in temperate deciduous forest soils. Forests, 11(6), 675.

Krumpálová, Z. (2002). Epigeic spiders (Araneae) of one Middle Danube floodplain forest. Biologia, 57(2), 161–169.

Krumpálová, Z., Krumpál, M., & Štrbík, I. (2009). Classification of epigeic spiders (Araneae) at the western part of the Carpathians (Slovakia). Biologia, 64(1), 116–123.

Laiho, R., Silvan, N., Cárcamo, H., & Vasander, H. (2001). Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology, 16(1), 1–9.

Lajtha, K., Bowden, R. D., Crow, S., Fekete, I., Kotroczó, Z., Plante, A., Simpson, M. J., & Nadelhoffer, K. J. (2018). The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Science of The Total Environment, 640–641, 1112–1120.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627.

Langellotto, G. A., & Denno, R. F. (2004). Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia, 139, 1–10.

Langraf, V., David, S., Babosová, R., Petrovičová, K., & Schlarmannová, J. (2020). Change of ellipsoid biovolume (EV) of ground beetles (Coleoptera, Carabidae) along an urban–suburban–rural gradient of Central Slovakia. Diversity, 12(12), 475.

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. Eu-ropean Journal of Soil Biology, 42(1), S3‒S15.

Lenoir, L., & Lennartsson, T. (2010). Effects of timing of grazing on arthropod communities in semi-natural grasslands. Journal of Insect Science, 10, 60.

Li, Y., Lindstrom, M. J., Zhang, J., & Yang, J. (2001). Spatial variability of soil erosion and soil quality on hillslopes in the Chinese Loess Plateau. Acta Geolo-gica Hispanica, 35, 261–270.

Magura, T., Ferrante, M. L., & Lövei, G. L. (2020). Only habitat specialists become smaller with advancing urbanization. Global Ecology and Biogeography, 29, 1978–1987.

Majzlan, O. (2009). Bezchordáty a chordáty. Danubiaprint, a.s., Bratislava.

Maraun, M., & Scheu, S. (2000). The structure of oribatid mites communities (Acari, Oribatida): Patterns, mechanisms and implications for future research. Ecography, 23(3), 374–382.

Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54.

Menta, C., Leoni, A., Bardini, M., Gardi, C., & Gatti, F. (2008). Nematode and microarthropod communities: Comparative use of soil quality bioindicators in covered dump and natural soils. Environmental Bioindicators, 3(1), 35–46.

Moço, M. K. S., Gama-Rodrigues, E. F., Gama-Rodrigues, A. C., Machado, R. C. R., & Baligar, V. C. (2010). Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Applied Soil Ecology, 46(3), 347–354.

Morris, T., & Campos, M. (1999). Predatory insects in olive-grove soil. Zoologica Baetica, 10, 149–160.

Muller, F., Hoffmann-Kroll, R., & Wiggering, H. (2000). Indicating ecosystem integrity – theoretical concepts and environmental requirements. Ecological Modelling, 130, 13–23.

Murphy, B. W. (2014). Soil organic matter and soil function – review of the literature and underlying data. Department of the Environment, Canberra.

Ondrasek, G., Bakić Begić, H., Zovko, M., Filipović, L., Meriño-Gergichevich, C., Savić, R., & Rengel, Z. (2019). Biogeochemistry of soil organic matter in agroecosystems and environmental implications. Science of the Total Environ-ment, 658, 1559–1573.

Orgiazzi, A., Bardgett, R. D., & Barrios, E. (2016). Global soil biodiversity atlas. European Commission, Publications Office of the European Union, Luxem-bourg.

Osler, G. H. R., & Sommerkorn, M. (2007). Toward a complete soil C and N cycle: Incorporating the soil fauna. Ecology, 88(7), 1611–1621.

Paoletti, M., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Environment, 74(1/3), 157‒165.

Parisi, V., & Menta, C. (2008). Microarthropods of the soil: Convergence phenomena and evaluation of soil quality using QBS-ar and QBS-C. Fresenius Environmental Bulletin, 17(8), 1170–1174.

Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthro-pod communities as a tool to assess soil quality and biodiversity: A new ap-proach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333.

Pokorný, V., & Šifner, F. (2004). Book of Insecta. Paseka, Prague.

Porhajašová, J., Babošová, M., Noskovič, J., & Ondrišík, P. (2018). Long-term developments and biodiversity in carabid and staphylinid (Coleoptera: Carabi-dae and Staphylinidae) fauna during the application of organic fertilizers under agroecosystem conditions. Polish Journal Environmental Studies, 27(5), 2229–2235.

Porhajašová, J., Noskovič, J., Rakovská, A., Babošová, M., & Čeryová, T. (2015). Biodiversity and dynamics of occurence of epigeic groups in different types of farming. Acta Horticulturae et Regiotecturae, 1, 5–10.

Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Seme-nyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97.

Purkart, A., Kollár, J., & Goffová, K. (2019). Fauna of ants (Hymenoptera: Formici-dae) of selected sand habitats in Podunajsko Region. Naturae Tutela, 23(1), 101–111.

Ruchin, A. B., Egorov, L. V., & Semishin, G. B. (2018). Fauna of click beetles (Coleoptera: Elateridae) in the interfluve of Rivers Moksha and Sura, Republic of Mordovia, Russia. Biodiversitas, 19(4), 1352–1365.

Ruchin, A. B., Egorov, L. V., Alekseev, S. K., Semishin, G. B., & Esin, M. N. (2021). Notes on the fauna of beetles (Insecta, Coleoptera) adjacent to the terri-tory of the Mordovia State Nature Reserve. Amurian Zoological Journal, 13(1), 12–35.

Saranenko, I. (2011). Application experience of agricultural lands productivity improvement methods. Polish Journal of Natural Sciencesthis, 26(4), 285–292.

Schoenholtz, S. H., Van Miegroet, H., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. Forest Ecology and Management, 138, 335–356.

Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter. II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3), 1042–1049.

Teofilova, T. (2021). The ground beetles (Coleoptera: Carabidae) and their role as bioagents. Forest Science, 2021(Special Issue), 125–142.

Violante, P. (2000). Metodi di analisi chimica del suolo. Franco Angeli Milano, Italy.

Wardle, D. A. (2002). Linking the aboveground and belowground components. Monographs in Population Biology. Princeton University Press, Princeton.

Wiezik, M., Gallay, I., Wieziková, A., Čiliak, M., & Dovčiak, M. (2017). Spatial structure of traditional land organization allows long-term persistence of large Formica exsecta supercolony in actively managed agricultural landscape. Jour-nal of Insect Conservation, 21, 257–266.

Yeates, G. W. (2003). Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199–210.


Most read articles by the same author(s)

> >>