Musculus gastrocnemius tetanus kinetics in alcohol-intoxicated rats with experimentally-induced hindlimb vascular ischemia under conditions of low-frequence muscle fatigue


  • O. A. Melnychuk Lesia Ukrainka Eastern European National University
  • O. P. Motuzіuk Lesia Ukrainka Eastern European National University
  • S. Y. Shvayko Lesia Ukrainka Eastern European National University
  • О. M. Homa ESC “Institute of Biology” of Taras Shevchenkо Kyiv National University
Keywords: m. gastrocnemius, muscle fatigue, alcohol intoxication, vascular ischemia, tеtanic force

Abstract

Alcohol intoxication and ischemic injury of skeletal muscles often accompany each other. It is shown that patients hospitalized with chronic alcoholism develop muscle fatigue. Skeletal muscle dysfunction in alcohol-dependent patients is caused by ethanol-associated myofibrillar atrophy and metabolic disbalance, while compression-ischemic lesions result from unconsciousness of the patient, in case of taking the critical alcohol dose. Therefore, the aim of this study is to discover typical m. gastrocnemius (cap. med.) tetanic kinetics changes in alcohol intoxicated rats with experimentally induced vascular ischemia of hindlimb muscles under conditions of low-frequency progressive muscle fatigue. Experiments were carried out on 10 young male Wistar rats (149.5 ± 5.8 g) kept under standard vivarium conditions and diet. The investigation was conducted in two phases: chronic (30 days) and acute (3 hours) experiment. All surgical procedures were carried out aseptically under general anesthesia. Ishemic m. gastrocnemius (cap. med.) tetanic kinetic changes and force productivity in alcohol intoxicated rats were investigated in the isometric mode, with direct electrical stimulation. The fatigue of m. gastrocnemius (cap. med.) was evaluated by three characteristic criteria: the first sag effect, the secondary force rise, the second sag effect. There have been 10 similar experiments: 5 series in each study group with 10 tetanic runs in each series. The highest amplitude of the native m. gastrocnemius (cap. med.) tetanus relative to isoline was taken as 100% force response. The same pattern of m. gastrocnemius (cap. med.) low-frequency fatigue development was found in both rat groups under study. It is evidenced by the absence of substantial m. gastrocnemius (cap. med.) tetanus kinetics differences in alcohol intoxicated rats, compared with non-alcohol intoxicated rats during fatigue test. However, the appreciable m. gastrocnemius (cap. med.) tetanic force reduction in alcohol intoxicated rats, compared with non-alcohol intoxicated rats is found. During fatigue test, m. gastrocnemius (cap. med.) of non-alcohol intoxicated rats featured 75.0 ± 17.4% loss, that of alcohol intoxicated rats has lost 75.0 ± 17.0%, while the native one – 62.0 ± 11.3% of initial force. Contraction-relaxation cycle kinetics changes were not identified. Thus, the tetanus kinetics and tetanic force change of m. gastrocnemius (cap. med.) in alcohol intoxicated rats indicates no changes in the process of development of low-frequency muscle fatigue, compared with non-alcohol intoxicated rats. Low force productivity of m. gastrocnemius (cap. med.) in alcohol intoxicated rats compared with non-alcohol intoxicated ones directly results from alcoholic myopathy complicated by vascular ischemia.

References

Adachi, J., Asano, M., Ueno, Y., Niemelä, O., Ohlendieck, K., Peters, T.J., Preedy, V.R., 2003. Alcoholic muscle disease and biomembrane perturbations (Review). J. Nutr. Biochem. 14(11), 616–625. http://dx.doi.org/10.1016/S0955-2863(03)00114-1
Angelini, C., Tasca, E., 2012. Muscle fatigue in neuromuscular disorders pathogenic mechanisms and treatme. Neuromuscular Disord. 22(3), 214–220. >> doi:10.1016/j.nmd.2012.10.010
Ariano, M.A., Armstrong, R.B., Edgerton, V.R., 1973. Hind limb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21, 51–55. >> doi:10.1177/21.1.51
Barry, B.K., Enoka, R.M., 2007. The neurobiology of muscle fatigue: 15 years later. Integr. Comp. Biol. 47(4), 465–473. >> doi:10.1093/icb/icm047
Boyas, S., Guevel, A., 2011. Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Ann. Phys. Rehabil. Med. 54, 88 –108. >> doi:10.1016/j.rehab.2011.01.001
Burke, R.E. 1981. Motor unit: Anatomy, physiology and functional organization. Handbook of Physiology 2, 345–422. >> doi:10.1002/cphy.cp010210
Carmo-Araújo, E.M., Dal-Pai-Silva, M., Dal-Pai, V., Cecchini, R., Anjos Ferreira, A.L., 2007. Ischaemia and reperfusion effects on skeletal muscle tissue: Morphological and histochemical studies. Int. J. Exp. Pathol. 88(3), 147–154. >> doi:10.1111/j.1365-2613.2007.00526.x
Celichowski, J., 1992. Motor units of medial gastrocnemius muscle in the rat during the fatigue test. I. Time course of unfused tetanus. Acta Neurobiol. Exp. 52, 17–21.
Clary, C.R., Guidot, D.M., Bratina, M.A, Otis, J.S., 2011. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats. AIDS Res. Ther. 8(30), 1–9. http://dx.doi.org/10.1186/1742-6405-8-30
Cofán, M., Nicolás, J.M., Fernández-Solá, J., Jordi, R., Tobías, E., Sacanella, E., Estruch, R., Urbano-Márquez, A., 2000. Acute ethanol treatment decreases intracellular calciumion transients in mouse single skeletal muscle fibres in vitro. Alcohol & Alcoholism 35(2), 134–138. http://dx.doi.org/10.1093/alcalc/35.2.134
Cooke, R., 2007. Modulation of actomyosin interaction during fatigue of skeletal muscle. Muscle Nerve 36(6), 756–777. http://dx.doi.org/10.1002/mus.20891
Dimitrova, N.A., Dimitrov, G.V., 2003. Interpretation of EMG changes with fatigue: Facts, pitfalls, and fallacies. Journal of Electromyography and Kinesiology 13, 13–36. http://dx.doi.org/10.1016/S1050-6411(02)00083-4
Duarte, J.A., Glöser, S., Remião, F., Carvalho, F., Bastos, M.L., Soares, J.M., Appel, H.J., 1997. Administration of tourniquet. I. Are edema and oxidative stress related to eachother and to the duration of ischemia in reperfused skeletal muscle? Arch. Orthop. Trauma Surg. 116(1–2), 97–100. http://dx.doi.org/10.1007/BF00434110
Estruch, R., Nicolas, J.M., Villegas, E., Junqué, A., Urbano-Márquez, A., 1993. Relationship between ethanol related diseases and nutritional status in chronically alcoholic men. Alcohol & Alcoholism 28(5), 543–550.
Fernandez-Sola, J., Garcıa, G., Elena, M., Tobías, E., Sacanella, E., Estruch, R., Nicolás, J.M., 2002. Muscle antioxidant status in chronic alcoholism. Alcohol Clin. Exp. Res. 26(12), 1858–1862. http://dx.doi.org/10.1111/j.1530-0277.2002.tb02493.x
Fernandez-Sola, J., Preedy, V.R., Lang, C.H., Gonzalez-Reimers, E., Arno, M., Lin, J.C., Wiseman, H., Zhou, S., Emery, P.W., Nakahara, T., Hashimoto, K., Hirano, M., Santolaria-Fernández, F., González-Hernández., T., Fatjó, F., Sacanella, E., Estruch, R., Nicolás, J.M., Urbano-Márquez, A., 2007. Molecular and cellular events in alcohol-induced muscle disease. Alcohol Clin. Exp. Res. 31(12), 1953–1962. http://dx.doi.org/10.1111/j.1530-0277.2007.00530.x
Fitts, R.H., 1994. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74(1), 49–94.
Frost, R.A., Nystrom, G., Burrows, P.V., Lang, C.H., 2005. Temporal differences in the ability of ethanol to modulate endotoxin-induced increases in inflammatory cytokines in muscle under in vivo conditions. Alcohol Clin. Exp. Res. 29(7), 1247–1256. http://dx.doi.org/10.1097/01.ALC.0000171935.06914.5D
González-Izal, M., Malanda, A., Gorostiaga, E., Izquierdo, M., 2012. Electromyographic models to assess muscle fatigue. J. Electromyog. Kines. 22, 501–512. http://dx.doi.org/10.1016/j.jelekin.2012.02.019
Gorshkova, D.A., 2013. Sostojanie svobodnoradikal’nih processov pri hronicheskoj alkogol’noj intoksikacii [Free radical processes state in chronic alcohol intoxication]. Actual Problems of Medicine. Materials of final annual scientific-practical conference on January 22, 2013 [Aktual’nie Problemy Mediciny. Materialy ezhegodnoj itogovoj nauchnoprakticheskoj konferencii 22 janvarja 2013]. Grodno, 191–193 (in Bіlorus).
Halilov, M.H., Zakirhodzhaev, S.J., 1983. K harakteristike nekotoryh patohimicheskih sdvigov v krovi, tkanjah pecheni i golovnogo mozga pry eksperimentalnoj alkogolnoj intoksikatcii. Voprosy Kliniki Alkogolizma. Tashkent, 38–41.
Hofer, T., Badouard, C., Bajak, E., Ravanat, J.L., Mattsson, A., Cotgreave, I.A., 2005. Hydrogen-peroxide causes greater oxidation in cellular RNA than in DNA. Biol. Chem. 386(4), 333–337.
Holobar, A., Farina, D., Gazzoni, M., Merletti, R., Zazula, D., 2009. Estimating motor unit discharge patterns from highden-sity surface electromyogram. Clin. Neurophysiol. 120(3), 551–562. http://dx.doi.org/10.1016/j.clinph.2008.10.160
Hunter, R.J., Neagoe, C., Järveläinen, H.A., Martin, C.R., Lindros, K.O., Linke, W.A., Preedy, V.R., 2003. Alcohol affects the skeletal muscle proteins, titin and nebulin in male and female rats. J. Nutr. 133(4), 1154–1157.
Iraklis, I., 2008. Chronically ischemic mouse skeletal muscle exhibits myopathy in association with mitochondrial dysfunction and oxidative damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(1), 290–296. >> doi: 10.1152/ajpregu.90374.2008
Kako, K.J., 1986. Membrane phospholipids and plasmalogens in the ischemic myocardium. Can. J. Cardiol. 2(3), 184–194.
Kiessling, K.H., Pilström, L., Bylund, A.C., Piehl, K., Saltin, B., 1975. Effect of chronic ethanol abuse on structure and enzyme activities of skeletal muscle in man. Scand. J. Clin. Lab. Invest. 35(6), 601–607. http://dx.doi.org/10.3109/00365517509095786
Lieber, L.R., Pedowitz, R.A., Friden, J., Gershuni, D.H., 1992. Decrease muscle speed. Strength and fatigability following two hours of tourniquet-induced ischemia. Scand. J. Plast. Reconstr. Hand Surg. 26, 127–132. http://dx.doi.org/10.3109/02844319209016002
Lusis, A.J., 2000. Atherosclerosis. Nature 407, 233–241. http://dx.doi.org/10.1038/35025203
Martin, F.C., Slavin, G., Levi, A.J., Peters, T.J., 1984. Investigation of the organelle pathology of skeletal muscle in chronic alcoholism. J. Clin. Pathol. 37(4), 448–454. http://dx.doi.org/10.1136/jcp.37.4.448
Motoharu, I., Yasuhiro, K., 2011. Morphologic changes in rat skeletal muscle after anterior tibial muscle and artery ligation. J. Clin. Welfare 10(8), 55–63.
Mrówczyn´ski, W., Celichowski, J., Krutki, P., Cabaj, A., Slawińska, U., Majczyński, H., 2011. Changes of the force-frequency relationship in the rat medial gastrocnemius muscle after total transection and hemisection of the spinal cord. J. Neurophysiol. 105, 2943–2950. http://dx.doi.org/10.1152/jn.00687.2010
Murthy, G., Hargens, A.R., Lehman, S., Rempel, D.M., 2001. Ischemia causes muscle fatigue. J. Orthop. Res. 19(3), 436–440. http://dx.doi.org/10.1016/S0736-0266(00)90019-6
Nicolás, J.M., García, G., Fatjó, F., Sacanella, E., Tobías, E., Badía, E., Estruch, R., Fernández-Solà, J., 2003. Influence of nutritional status on alcoholic myopathy. Am. J. Clin. Nutr. 78(2), 326–333.
Nozdrenko, D.M., Motuzjuk, O.P., Zavodovs’kij, D.O., Stepanjuk, J.V., 2012. Ul’trastrukturnі zmіny mіofіbryl u ljudiny pry іshemіchnіj kontrakturі. Naukovyj Vіsnyk Volyns’kogo Nacіonal’nogo Unіversytetu іmenі Lesі Ukrainki 2, 89–92.
Oba, T., Koshita, M., Yamaguchi, M., 1997. Ethanol enhances caffeine-induced Са2+release channel activation in skeletal muscle sarcoplasmic reticulum. Am. J. Physiol. 272(2 Pt1), 622–627.
Ohlendieck, K., Harmon, S., Koll, M., Paice, A.G., Preedy, V.R., 2003. Са2+ regulatory muscle proteins in the alcohol-fed rat. Metabolism 52(9), 1102–1112. http://dx.doi.org/10.1016/S0026-0495(03)00063-5
Patchenko, J.V., Saljutin, R.V., Dambrovs’kyj, D.B., Martynenko, S.I., 2011. Stan sudynnogo endoteliju ta gistologichni zminy m’jazovoi’ tkanyny u hvoryh pry hronichnij ishemii’. Klinichna Hirurgija 3, 41–44.
Pendergast, D.R., York, J.L., Fisher, N.M., 1990. A survey of muscle function in detoxified alcoholics. Alcohol. 7(4), 361–366. http://dx.doi.org/10.1016/0741-8329(90)90096-U
Pioterkiewicz, M., Celichowsci, J., 2007. Tetanic potentiation in motor units of rat medial gastrocnemius. Acta Neurobiol. Exp. 67, 35–42.
Podpalova, O.M., Nuryshhenko, N.J., Cejsljer, J.V., Peljuh, L.I., Andrejchenko, S.V., Martynjuk, V.S., 2012. Vplyv hronichnoi’ alkogolizacii’ shchuriv na stupin’ destruktyvnogo porushennja skeletnyh m’jaziv [Effect of chronic alcoholisation of rats on skeletal muscle destructive shifts]. Tezy dokladov mezhdisciplinarnoj nauchnoj konferencii: “Adaptacionnye strategii zhyvyh system” [Interdisciplinary scientific conference “Adaptive Strategies of living systems”]. AR Crimea, 179 (in Ukraine).
Preedy, V.R., Peters, T.J., Adachi, J., Ahmed, S., Mantle, D., Niemela, O., Parkkila, S., Worrall, S., 2001. Pathogenic mechanisms in alcoholic myopathy. In: Alcohol in Health and Disease. International titisee symposium on health effects of alcohol intake, titisee Germany, 243–259. >> doi:10.3109/9780203902172-13
Reid, M.B., 2008. Free radicals and muscle fatigue: Of ROS, canaries, and the IOC. Free Radic. Biol. Med. 44(2), 169–179. >> doi:10.1016/j.freeradbiomed.2007.03.002
Reilly, M.E., McKoy, G., Mantle, D., Peters, T.J., Goldspink, G., Preedy, V.R., 2000. Protein and mRNA levels of the myosin heavy chain isoforms I, IIa, IIx and IIb in type I and type II fibre predominant rat skeletal muscles in response to chronic alcohol feeding. J. Muscle Res. Cell Motil. 21(8), 763–777. >> doi:10.1023/A:1010336624154
Rubin, E., Katz, A.M., Lieber, C.S., Stein, Puskin, S., 1976. Muscle damage produced by chronic alcohol consumption. Am. J. Pathol. 83(3), 499–516.
Soussi, B., Idström, J.P., Bylund-Fellenius, A.C., Scherstén, T., 1990. Dynamics of skeletal muscle energetics during ischemia and reperfusion assessed by in vivo 31P NMR. NMR Biomed. 3(2), 71–77. http://dx.doi.org/10.1002/nbm.1940030205
Tupling, R., Green, H., Senisterra, G., Lepock, J., Mckee, N., 2001. Effects of ischemia on sarcoplasmic reticulum Са2+ up-take and Са2+ release in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 281(2), 224–232.
Vary, T.C., Nairn, A.C., Lang, C.H., 2004. Restoration of protein synthesis in heart and skeletal muscle after with drawal of alcohol. Alcohol Clin. Exp. Res. 28(4), 517–525. http://dx.doi.org/10.1097/01.ALC.0000121653.80502.54
Westerblad, H., Allen, D.J., 1991. Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J. Gen. Physiol. 98(3), 615–635. http://dx.doi.org/10.1085/jgp.98.3.615
Zaugolnikov, V.S., Teplova, N.N., 2007. Rabdomioliz i sindrom pozitsionnoy ishemii. Vyatskiy Meditsinskiy Vestnik 2, 71–73.
Zavodovs’kyj, D., Nozdrenko, D., Homa, O., Soroka, V., 2013. Zmina shvydkisno-sylovyh pokaznykiv skorochennja gomilkovogo m’jazu shhura za umov shtuchno vyklykanoi’ vaskuljarnoi’ ishemii’. Visnyk Kyi’vs’kogo Nacional’nogo Universytetu imeni Tarasa Shevchenka. Biologija 63, 5–7.
Published
2014-04-01
Section
Articles