Comparison of commonly used ecological scales with the Belgard Plant Ecomorph System


Keywords: ecological scales; environmental factors; habitats; heliomorphs; hygromorphs; trophomorphs; halomorphs; cenomorphs; ecomorphic analysis

Abstract

There are several ecological scales developed both for phytoindication of ecological factors and plant ecomorphs. Among them, the scales of Ellenberg and Tsyganov are the most commonly used. L. G. Ramensky and P. S. Pogrebnyak had developed a phytoindication method; they also were founders of first ecological scale of plant species in relation to various environmental factors. One of first ecomorph systems was developed by Alexander Lyutsianovich Belgard. In 1947, Belgard presented a tabular ecomorph system in his doctoral dissertation, and later in monograph “Forest vegetation of the South-East of Ukraine”. In the system he used abbreviated Latin names applying terminology proposed in the late 19th century by Dekandol, Warmin and other authors. He considered ecomorphs as adaptations of plants to environmental conditions in forests of the steppe zone of Ukraine where forest cenoses are exposed to processes of steppization, prairification, swamping, salinization, and thus clarification of relationships between forest, meadow, steppe, marsh and weed plant species was essential. Therefore, development and introduction of cenomorph terms as “adaptation of plant species to phytocenosis as a whole” were an absolutely new contribution to the concept of ecomorph system. In environmental factor scales of Ellenberg and other authors, environment characteristics based on phytoindication were underlined; in the Belgard Plant Ecomorph System, ecomorphs reflect ability of plant species to grow within certain ranges of a given factor. These approaches are quite comparable, and ecomorphs of the Belgard system correspond to certain grades of the Ellenberg and Tsyganov scales. The Belgard ecomorph system has been applied in a number of fundamental and applied works on plant ecology and phytocenology. It is convenient for characterizing ecological features of plant species growing in the steppe zone with a wide range of environment factors such as lighting, humidity, and soil richness. Other authors have expanded and supplemented the Belgard Plant Ecomorph System based on its strategy. A number of ecomorphs was introduced; they reflect intermediate or extreme gradations of factors. A new cenomorph – silvomargoant – has been proposed by the authors of this paper.

References

Baranovsky, B. A. (2000). Rastitel'nost' ruslovogo ravninnogo vodohranilishha [Vegetation of the channel of a lowland reservoir]. Izdatel'stvo DNU, Dnepropetrovsk (in Russian).


Baranovsky, B. A. (2005). Rastitel'nost' pojmennyh vodoemov Prisamar'ja Dneprovskogo [The vegetation of floodplain reservoirs in the Prisamarya Dnieper]. Pytannja Stepovogo Lisoznavstva ta Lisovoi' Rekul'tivacii' Zemel', 34, 90–94 (in Russian).


Baranovsky, B. A., Ivanko, I. A., Kotovych, A. V., Karmyzova, L. A., & Roschina, N. O. (2017). Analіz trofіchnoji struktury flory lіsіv dolyny r. Orіl' [Analysis of trophic structure of forest flora in the Oril river valley]. Gruntoznavstvo, 18(3–4), 37–50 (in Ukrainian).


Baranovsky, B. A., Manjuk, V. V., Ivan'ko, І. А., & Каrmyzova, L. A. (2017). Analіz flori nacіonal'nogo prirodnogo parku “Orіl's'kij” [Analysis of the flora of the Orilsky National Park]. Lira, Dnipro (in Ukrainian).


Baranovsky, B. O. (2008). Analiz florystychnogo riznomanittja richkovyh dolyn Prysamar'ja na suchasnomu etapi doslidzhen' [Analysis of floristic diversity of river valleys of the Prysamarya at the current stage of research]. Pytannja Stepovogo Lisoznavstva ta Lisovoi' Rekul'tivacii' Zemel', 37, 91–94 (in Ukrainian).


Baranovsky, B. O. (2009). Fіtoіndikacіjna ocіnka ekologіchnogo stanu vodojm basejnu r. Samari [Phytoindication assessment of the ecological state of the River Samara water basin]. Pytannja Stepovogo Lisoznavstva ta Lisovoi' Rekul'tyvacii' Zemel', 38, 52–58 (in Ukrainian).


Baranovsky, B. А. (2017). Vydelenie novoj cenomorfy v kontekste razvitija sistemy ekomorf A. L. Bel'garda [Differentiation of a new coenomorph in the context of the development of Belgard’s ecomorph system ]. Ecology and Noospherology, 28(3–4), 16–26 (in Russian).


Bel'gard, A. L. (1950). Lesnaja rastitel'nost' jugo-vostoka USSR [Forest vegetation of southeast of Ukrainian SSR]. Lesnaja Promyshlennost’, Kiev (in Russian).


Berg, C., Welk, E., & Jaeger, E. (2017). Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Applied Vegetation Science, 20, 482–493.


Britton, A. J., Hewison, R. L., Mitchell, R. J., & Riach, D. (2017). Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biological Conservation, 210, 72–79.


Brygadyrenko, V. V. (2016). Evaluation of ecological niches of abundant species of Poecilus and Pterostichus (Coleoptera: Carabidae) in forests of the steppe zone of Ukraine. Entomologica Fennica, 27(2), 81–100.


Čeplová, N., Kalusová, V., & Lososová, Z. (2017). Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landscape and Urban Planning, 159, 15–22.


Chmura, D., Żarnowiec, J., & Staniaszek-Kik, M. (2017). Do Ellenberg’s indicator values apply to the vascular plants colonizing decaying logs in mountain forests? Flora, 234, 15–23.


Cyganov, D. N. (1974). Ekomorfy i ekologicheskie svity [Ecomorphs and ecological suites]. Byuleten MOIP, 79, 2 (in Russian).


Cyganov, D. N. (1975). Sistema jekomorf i indikacija osnovnyh ekologicheskih rezhimov mestoobitanij [The system of ecomorphs and indication of the main ecological regions of habitats]. Ekologija, 6, 15–22 (in Russian).


Cyganov, D. N. (1983). Fitoindikacija jekologicheskih rezhimov v podzone hvojno-shirokolistvennyh lesov [Phytoindication of ecological regimes in the subzone of coniferous-broadleaf forests]. Nauka, Moscow (in Russian).


Dekandol, А. (1956). Geografija rastenij [Geography of plants]. Vestnik Imperatorskogo Russkogo Geograficheskogo Obshchestva (in Russian).


Diduh, Y. P. (2012). Osnovy bioindykacii' [Basics of bioindication]. Naukova Dumka, Kyiv (in Ukrainian).


Douda, J., Boublík, K., Doudová, J., & Kyncl, M. (2016). Traditional forest management practices stop forest succession and bring back rare plant species. Journal of Applied Ecology, 54(3), 761–771.


Dvoreckij, I. H. (1976). Latinsko-Russkij slovar' [Latin-Russian Dictionary]. Russkij Jazyk, Moscow (in Russian).


Dyderski, M. K., Wrońska-Pilarek, D., & Jagodziński, A. M. (2016). Ecological lands for conservation of vascular plant diversity in the urban environment. Urban Ecosystems, 20(3), 639–650.


Dіduh, Y. P., & Pljuta, P. G. (1994). Fіtoіndіkacіja ekologіchnih faktorіv [Phytoindication of environmental factors]. Kyiv (in Ukrainian).


Ekoflora Ukrai'ny [Ecoflora of Ukraine] (2000). Fitosociocentr, Kyiv (in Ukrainian).


Ellenberg, H. (1950). Uncrautgtmeinschaften als Zeigen Fir Clima und Boden. Landwirtschafliche Pflancensociologie, 1. Stutgart.


Ellenberg, H. (1979). Zeigerverte der Gefassphlancen Mitteleuropas. Scripta Geobotanica, 9, 1–121.


Ellenberg, H. (1988). Vegetation ecology of Central Europe. Cambridge University Press, Cambridge.


Ellenberg, H., Weber, H. E., Dull, R., Wirth, V., Werner, W., & Paulissen, D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.


Elst, E. M., De Boeck, H. J., Vanmaele, L., Verlinden, M., Dhliwayo, P., & Nijs, I. (2017). Impact of climate extremes modulated by species characteristics and richness. Perspectives in Plant Ecology, Evolution and Systematics, 24, 80–92.


Ewald, J., & Ziche, D. (2016). Giving meaning to Ellenberg nutrient values: National Forest Soil Inventory yields frequency-based scaling. Applied Vegetation Science, 20(1), 115–123.


Flora USSR (1935–1965). [Flora of USSR]. Kyiv (in Ukrainian).


Ford, H., Healey, J. R., Markesteijn, L., & Smith, A. R. (2018). How does grazing management influence the functional diversity of oak woodland ecosystems? A plant trait approach. Agriculture, Ecosystems and Environment, 258, 154–161.


Gilhaus, K., Boch, S., Fischer, M., Hölzel, N., Kleinebecker, T., Prati, D., Rupprecht, D., Schmitt, B., & Klaus, V. (2017). Grassland management in Germany: Effects on plant diversity and vegetation composition. Tuexenia, 37, 379–397.


Goedecke, F., Jahn, R., & Bergmeier, E. (2018). Quantified ecology and co-occurrence of Mediterranean woody species in a landscape context. Plant Ecology, 219(5), 481–496.


Hancock, M. H., Klein, D., Andersen, R., & Cowie, N. R. (2018). Vegetation response to restoration management of a blanket bog damaged by drainage and afforestation. Applied Vegetation Science, 21(2), 167–178.


Hülber, K., Moser, D., Sauberer, N., Maas, B., Staudinger, M., Grass, V., Wrbka, T., & Willner, W. (2017). Plant species richness decreased in semi-natural grasslands in the Biosphere Reserve Wienerwald, Austria, over the past two decades, despite agri-environmental measures. Agriculture, Ecosystems and Environment, 243, 10–18.


Johansen, O. M., Andersen, D. K., Ejrnæs, R., & Pedersen, M. L. (2018). Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs). Limnologica, 68, 130–141.


Kalusová, V., Čeplová, N., & Lososová, Z. (2016). Which traits influence the frequency of plant species occurrence in urban habitat types? Urban Ecosystems, 20(1), 65–75.


Kılıç, D. D., Kutbay, H. G., Sürmen, B., & Hüseyinoğlu, R. (2018). The classification of some plants subjected to disturbance factors (grazing and cutting) based on ecological strategies in Turkey. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(1), 87–102.


Koch, M., Schröder, B., Günther, A., Albrecht, K., Pivarci, R., & Jurasinski, G. (2016). Taxonomic and functional vegetation changes after shifting management from traditional herding to fenced grazing in temperate grassland communities. Applied Vegetation Science, 20(2), 259–270.


Kosanic, A., Anderson, K., Harrison, S., Turkington, T., & Bennie, J. (2018). Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS One, 13(2).


Landolt, E. (1977). Okologische Zeigerwerts zur Sweizer Flora. Veroffentlichungen des Geobotanischen Institutes der ETH, 64, 1–208 (in Germany).


Mitchell, R. J., Hewison, R. L., Britton, A. J., Brooker, R. W., Cummins, R. P., Fielding, D. A., Fisher, J. M., Gilbert, D. J., Hester, A. J., Hurskainen, S., Pakeman, R. J., Potts, J. M., & Riach, D. (2017). Forty years of change in Scottish grassland vegetation: Increased richness, decreased diversity and increased dominance. Biological Conservation, 212, 327–336.


Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine (Nomenclatural checklist). Naukova Dumka, Kyiv.


Muir, C. D. (2017). Light and growth form interact to shape stomatal ratio among British angiosperms. New Phytologist, 218(1), 242–252.


Opredelitel' vysshih rastenij Ukrainy [Identification guide to higher plants of Ukraine] (1987). Kiev (in Russian).


Pogrebnjak, P. C. (1955). Osnovy lesnoj tipologii [Basics of forest typology]. Kiev (in Russian).


Pruchniewicz, D. (2017). Abandonment of traditionally managed mesic mountain meadows affects plant species composition and diversity. Basic and Applied Ecology, 20, 10–18.


Ramenskiy, L. G. (1929). K metodike sravnitel'noj obrabotki i sistematizatsii spiskov rastenij i drugikh ob'yektov, opredelyayemykh neskol'kimi neskhodno deystvuyushchimi faktorami [On the method of comparative processing and systematization of lists of plants and other objects, determined by several dissimilar factors]. Sel'khozgiz, Moscow. Pp. 11–36 (in Russian).


Ramenskiy, L. G. (1971). Problemy i metody izuchenija rastitel'nogo pokrova [Problems and methods of studying vegetation]. Nauka, Leningrad (in Russian).


Ramenskiy, L. G., Tsatsenkin, I. A., Chizhikov, O. N., & Antipov, N. A. (1956). Ekologicheskaja ocenka kormovyh ugodij po rastitel'nomu pokrovu [Ecological assessment of fodder land by vegetation cover]. Sel'khozgiz, Moscow (in Russian).


Rastenija lesnyh poljan i opushek [Plants of forest glades and fringes] (1986). Schtiinca, Kischinjov (in Russian).


Roeling, I. S., Ozinga, W. A., Dijk, J., Eppinga, M. B., & Wassen, M. J. (2018). Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios. Oecologia, 186(4), 1055–1067.


Santini, B. A., Hodgson, J. G., Thompson, K., Wilson, P. J., Band, S. R., Jones, G., Charles, M., Bogaard, A., Palmer, C., & Rees, M. (2017). The triangular seed mass-leaf area relationship holds for annual plants and is determined by habitat productivity. Functional Ecology, 31(9), 1770–1779.


Schindler, S., O’Neill, F. H., Biró, V., Damm, C., Gasso, V., Kanka, R., Sluis, T., Krug, A., Lauwaars, S. G., Sebesvari, Z., Pusch, M., Baranovski, B., Ehlert, T., Neukirchen, B., Martin, J. R., Euller, K., Mauerhofer, V., & Wrbka, T. (2016). Multifunctional floodplain management and biodiversity effects: A knowledge synthesis for six European countries. Biodiversity and Conservation 25, 1349–1382.


Tarasov, V. V. (1981). Ob еkologicheskoj pasportizacii trav lesnyh kul'tur biogeocenozov stepi (v predelah Dnepropetrovskoj oblasti) [On the ecological certification of grasses of forest cultures of biogeocenoses of the steppe (within the Dnepropetrovsk region)]. DGU, Dnepropetrovsk, 122–138 (in Russian).


Tarasov, V. V. (2012). Flora Dnipropetrovs'koi' ta Zaporiz'koi' oblastej [Flora of Dnipropetrovsk and Zaporizhia regions]. Lira, Dnipropetrovsk (in Ukrainian).


Van Dobben, H. F., & de Vries, W. (2016). The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests. Ecology and Evolution, 7(1), 214–227.


Vitasović Kosić, I., Juračak, J., & Łuczaj, Ł. (2017). Using Ellenberg-Pignatti values to estimate habitat preferences of wild food and medicinal plants: An example from northeastern Istria (Croatia). Journal of Ethnobiology and Ethnomedicine, 13(1).


Warming, Е. (1902–1903). Raspredelenie rastenij v zavisimosti ot vneschnih uslovij [Distribution of plants depending on external conditions]. Brokhaus – Efron, 1–3, Sankt-Peterburg (in Russian).


Кirpichnikov, М. E., & Sabinkova, N. N. (1977). Russko-latinskij slovar' dlja botanikov [Russian-Latin Dictionary for Botanists]. Nauka, Leningrad (in Russian).


Мirkin, B. M., & Naumova L. G. (2012). Sovremennoe sostojanie osnovnyh koncepcij nauki o rastitel'nosti [The current state of the basic concepts of the science of vegetation]. Ufa (in Russian).


Маtveev, N. М. (1995). Ob osnovnyh tipah cenoticheskoj struktury etalonnyh dlja stepnogo Zavolzh'ja estestvennyh lesov [On the main types of the cenotic structure of the reference forests for the steppe Zavolzhye]. Voprosy Ekologii i Ohrany Prirody v Lesostepnoj i Stepnoj Zonah, Samara, 1, 29–41 (in Russian).


Маtveev, N. М. (2006). Biojekologicheskij analiz flory i rastitel'nosti (na primere lesostepnoj i stepnoj polosy) [Bioecological analysis of flora and vegetation on the example of the forest-steppe and steppe strip]. Samara (in Russian).


 

Published
2018-11-18
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.