Dynamic stability of communities of amphibians in short-term-flooded forest ecosystems

  • O. V. Zhukov Oles Honchar Dnipropetrovsk National University
  • N. L. Gubanova Oles Honchar Dnipropetrovsk National University
Keywords: dynamics of populations, stationary state, Bufo bufo, Bombina bombina, Rana arvalis, Pelobates fuscus

Abstract

The estimation of stability of amphibian populations on the basis of data of population dynamics is given. The paper shows an attempt to estimate the direction of dynamic changes of amphibian populations, and defines the rate of the system deviation from the stationary state due to possible influence of the environmental factors by using concepts such as reactivity, degree of reactivity and flexibility of the system when using their indexes. It is found that populations of amphibians are quite stable with regard to quantifying these species. Characteristic feature is the elasticity of the system. It is confirmed by the elasticity of the system species Bufo bufo (Linnaeus, 1758). TypePelobates fuscus (Laurenti, 1768) is defined as a factor of stability of the system in quantitative terms. Dependenceof dynamics of the population on its size is established using the regression equation. Dynamics of groups depends on the action of possible predictors in response to which the population of B. bufo is not changed. The ecosystem is characterized as a place of interaction between biotic factors and factors of abiotic origin, which are due to the external action. Internal factor of the ecosystem stability is the influence of some amphibian populations on the other ones. The system features sustainable and relatively stable number of B. bufo, which does not affect the level of its stability. Stationary state of the grouping is unstable due to dynamic matrix, which describes the behavior of the group in the vicinity of the first stationary state. The second steady state is stableone, and the system returns to the stationary state with the help of wave-like dynamics. On the basis of our study it is established that the number of groups of amphibians remains stable, the systems behave differently, and dynamics of their return to the stationary state is elastic or reactive one. Еcosystems within lime-ash oak forests in the Central floodplain of the Samarariver represent relatively stable populations of amphibians. The constant number of individuals in the population confirms stability of the ecosystem. The regression equation indicates the dependence of the dynamic performance of the system on the number of amphibians.

References

Armstrong, R.A., 1982. The effects of connectivity on community stability. Am. Nat. 120, 391–402. >> doi.org/10.1086/283997

Asara, Ö., Ilkb, O., Dagc, O., 2015. Estimating Box-Cox power transformation parameter via goodness of fit tests. Communications in Statistics – Simulation and Computation 12. >> doi.org/10.1080/03610918.2014.957839

Beddington, J., Free, C., Lawton, J., 1976. Concepts of stability and resilience in predator – prey models. J. Anim. Ecol. 45, 791–816.

Bikov, B.A., 1983. Jekologicheskij slovar' [Ecological dictionary]. Nauka, Alma-Ata (in Russian).

Bulakhov, V.L., Gasso, V.Y., Pakhomov, O.Y., 2007. Bіologіchne rіznomanіttja. Dnіpropetrovs'ka oblast'. Amfіbії ta reptilії [Biological Diversity of Ukraine. The Dnipropetrovsk region. Amphibians and Reptiles (Amphibia et Reptilia)]. Dnipropetrovsk Univ. Press, Dnipropetrovsk (in Ukrainian).

Carik, L., 2010. Samovіdnovlennja populjacіj za rіznih umov jikh rostu [Independent restore populations in various conditions of their growth]. Vìsn. Lviv. Unìv. Ser. Bìol. 53, 94–99 (in Ukrainian).

Carpenter, S.R., Kraft, C.E., Wright, R., 1992. Resilience and resistance of alake phosphorus cycle before and after a food web manipulation. Am. Nat. 140, 781–798.

Chase, J.M., 1996. Differential competitive interactions and the included niche: An experimental analysis with grasshoppers. Oikos 76, 103–112. >> doi.org/10.2307/3545752

Chen, X., Cohen, J., 2001 Transient dynamic and food-web complexity in the Lotka-Volterra cascade model. Proc. Roy. Soc. London 268, 869–877. >> doi.org/10.1098/rspb.2001.1596

Cottingham, K.L., Carpenter, S.R., 1994. Predictive indices of ecosystem resilience in models of north temperate lakes. Ecology 75, 2127–2138. >> doi.org/10.2307/1941616

DeAngelis, D.L., 1980. Energy flow, nutrient cycling, and ecosystem resilience. Ecology 61, 764–771. >> doi.org/10.2307/1936746

DeAngelis, D.L., Bartell, S.M., Brenkert, A.L., 1989. Effects of nutrient recycling and food chain length on resilience. Am. Nat. 134, 778–805. >> doi.org/10.1086/285011

DeAngelis, D.L., Mulholland, P.J., Palumbo, A.V., 1989. Nutrient dynamics and food-web stability. Annu. Rev. Ecol. Syst. 20, 71–95. >> doi.org/10.1146/annurev.es.20.110189.000443

Elzanowski, A., Cieslewicz, J., Kaczor, M., 2009. Amphibian road mortality in Europe: A meta-analysis with new data from Poland. Eur. J. Wildlife Res. 55, 33–43. >> doi.org/10.1007/s10344-008-0211-x

Hallett, J.G., Pimm, S.L., 1979. Direct estimation of competition. Am. Nat. 113, 593–599. >> doi.org/10.1086/283415

Harrison, G., 1979. Stability under environmental stress: Resistance, resilience, persistence, and variability. Am. Nat. 113, 659–669. >> doi.org/10.1086/283424

Harwell, M.A., Cropper, W.P., Ragsdale, H.L., 1977. Nutrient recycling and stability: A reevaluation. Ecology 58, 660–666. >> doi.org/10.2307/1939016

Harwell, M.A., Cropper, W.P., Ragsdale, H.L., 1981. Analysis of transient characteristics of a nutrient cycling model. Ecol. Model. 12, 105–131.

Harwell, M.A., Ragsdale, H.L., 1979. Eigengroup analyses of linear ecosystem models. Ecol. Model. 7, 239–255. >> oi.org/10.1016/0304-3800(79)90037-1

Holling, C., 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23. >> doi.org/10.1146/annurev.es.04.110173.000245

Ishhenko, V.G., 2007. Zhiznennyj reproduktivnyj uspeh i struktura populjacii ostromordoj ljagushki (Rana arvalis Nilss., 1842) [Vital reproductive success and population structure of Rana arvalis]. Sovremennaja Gerpetologija 1, 76–87 (in Russian).

Jordan, C.F., Kline, J.R., Sasscer, D.S., 1972. Relative stability of mineral cycles in forest ecosystems. Am. Nat. 106, 237–253. >> doi.org/10.1086/282764

Kusak, J., Huber, D.R., Gomerčić, T., Schwaderer, G., Gužvica, G., 2009. The permeability of highway in Gorski kotar (Croatia) for large mammals. Eur. J. Wildlife Res. 55, 7–21. >> doi.org/10.1007/s10344-008-0208-5

Laska, M.S., Wootton, J.T., 1998. Theoretical concepts and empirical approaches to measuring interaction strength. Ecology 79(2), 461–476. >> doi.org/10.1890/0012-9658(1998)079%5B0461:TCAEAT%5D2.0.CO;2

Lee, J.J., Inman, D.L., 1975. The ecological role of consumers – an aggregated systems view. Ecology 56, 1455–1458. >> doi.org/10.2307/1934715

Loreau, M., 1994. Material cycling and the stability of ecosystems. Am. Nat. 143, 508–513. >> doi.org/10.1086/285616

MacArthur, R.H., Levins, R., 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385. >> doi.org/10.1086/282505

May, R.M., 1974. Stability and complexity in model ecosystems. Princeton University Press, Princeton, USA. >> doi.org/10.1109/TSMC.1976.4309488

Mihaylovskiy, G.E., 1988. Opisanie i otsenka sostoyaniya planktonnyih soobschestv [Description ane assessment of the plankton community state]. Nauka, Moscow (in Russian).

Nakajima, H., 1992. Sensitivity and stability of flow networks. Ecol. Model. 62, 123–133. >> doi.org/10.1016/0304-3800(92)90085-S

Navarro, D.J., 2015. Learning statistics with R: A tutorial for psychology students and other beginners. (Version 0.5) University of Adelaide, Adelaide, Australia.

Neubert, M.G., Caswell, H., 1997. Alternatives to resilience for measuring the responses of ecological systems to perturbation. Ecology 78(3), 653–665. >> doi.org/10.1890/0012-9658(1997)078%5B0653:ATRFMT%5D2.0.CO;2

O’Neill, R.V., 1976. Ecosystem persistence and heterotrophic regulation. Ecology 57, 1244–1253.

Orlowski, G., Nowak, L., 2004. Road mortality of hedgehogs Erinaceus spp. in farmland in Lower Silesia (South-Western Poland). Pol. J. Ecol. 52(3), 377–382.

Pakhomov, O.Y., Gasso, V.Y., Goloborodko, K.K., Poljakov, M.V., Grycan, Y.I., Bulakhov, V.L., Brygadyrenko, V.V., Kljuchko, Z.F., Mezhzherin, S.V., Novicky, R.O., Pysanec, Y.M., Pljushh, I.G., Ponomarenko, O.L., Puchkov, O.V., Radchenko, V.G., 2011. Chervona knyga Dnipropetrovskoi oblasti. Tvarynnyj svit [The red book of Dnipropetrovsk region. Animals]. New Print, Dnipropetrovsk (in Ukrainian).

Pfister, C.A. 1995. Estimating competition coefficients from census data: A test with field manipulations of tide pool fishes. Am. Nat. 146, 271–291. >> doi.org/10.1086/285798

Pianka, E.R., 1973. The structure of lizard communities. Annu. Rev. Ecol. Syst. 4, 53–74. >> doi.org/10.1146/annurev.es.04.110173.000413

Pimm, S.L., 1979. The structure of food webs. Theor. Popul. Biol. 16, 144–158. >> doi.org/10.1016/0040-5809(79)90010-8

Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature 307, 321–326. >> doi.org/10.1038/307321a0

Pimm, S.L., Lawton, J.H., 1977. Number of trophic levels in ecological communities. Nature 268, 329–331. >> doi.org/10.1038/268329a0

Pimm, S.L., Lawton, J.H., 1978. On feeding on more than one trophic level. Nature 275, 542–544. >> doi.org/10.1038/275542a0

Reshetilo, O., 2013. Mehanizmi samovidnovlennya populyaciy zemnovodnih u visokogiryi Ukrainskih Karpat [The mechanisms of amphibian populations’ self-Renewalin the high-mountains of Ukrainian Carpathians]. Vìsn. Lviv. Unìv. Ser. Bìol. 62, 152–159 (in Ukrainian).

Ricklefs, R.E., Travis, J., 1980. A morphological approach to the study of avian community organization. Auk 97, 321–338.

Schoener, T.W. 1974. Competition and the form of habitat shift. Theor. Popul. Biol. 6, 265–307. >> doi.org/10.1016/0040-5809(74)90013-6

Shadrin, N.V., 2012. Dinamika jekosistem i jevoljucija: Mnozhestvennost' ustojchivyh sostojanij i tochki oprokidyvanija / nevozvrata. Neobhodimost' novogo ponimanija [Ecosystem dynamics and evolution: Multiplicity of steady states and tipping points. Necessity of new understanding]. Marine Ecological Journal 11(2), 85–95 (in Russian).

Sumarokov, O., Zhukov, O., 2007. Obosnovanie vosstanovlenija jekologicheskogo potenciala agrobiogeocenozov pri umen'shenii pesticidnyh nagruzok v Ukraine [The rationale is to restore the ecological potential agrobiocenoses while reducing pesticide loads in Ukraine]. Izv. Hark. Jentomol. O-va. 14(1–2), 145–154.

Vincent, T.L., Anderson, L.R., 1979. Return time and vulnerability for a food chain model. Theor. Popul. Biol. 15, 217–231. >> doi.org/10.1016/0040-5809(79)90036-4

Wootton, J.T., 1994. Putting the pieces together: Testing the independence of interactions among organisms. Ecology 75, 1544–1551. >> doi.org/10.2307/1939615

Zhukov, O.V., Gubanova, N.L., 2015. Riznomanittya ta dynamika uhrupovan' zemnovodnykh zaplavnykh ekosystem r. Samara-Dniprovs'ka [Diversity and dynamic of flooded ecosystems anura community]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 23(1), 66–73.

Published
2015-09-12
Section
Articles