Influence of saprophages (Isopoda, Diplopoda) on leaf litter decomposition under different levels of humidification and chemical loading

  • A. P. Pokhylenko Oles Honchar Dnipro National University
  • O. O. Didur Oles Honchar Dnipro National University
  • Y. L. Kulbachko Oles Honchar Dnipro National University
  • L. P. Bandura Dnipro State Agrarian and Economic University
  • S. A. Chernykh Dnipro State Agrarian and Economic University
Keywords: ecosystem services; millipedes; litter transformation; climate changes; chemical stress; common pill bug.


The paper presents a study about the influence of two saprophage groups (Isopoda, Diplopoda) on leaf litter decomposition under different levels of humidification and chemical stress. Because of their worldwide distribution, we focused on the common pillbug Armadillidium vulgare (Latreille, 1804) (Isopoda, Armadillidiidae), and the common millipede species Rossiulus kessleri (Lohmander, 1927) (Julida, Julidae). The function of environment creation by the given saprophages, as destructors of dead plant matter, supporting such ecosystem services as soil fertility improvement and nutrients’ turnover, is highlighted. To conduct the experiment, the animals were collected manually and using pitfall trapping. In order to bring the experimental conditions closer to the natural, the individuals were not sexed. The maximum consumption of leaf litter by woodlice was recorded in the conditions with adequate moisture (0.5 mL of distilled water per box) and amounted to 2.52 mg/10 individuals per day, which exceeds its consumption with low and increased moisture, respectively, by 1.82 and 1.24 times. As for the effect of interaction, the consumption of maple litter with optimal moisture (4.77 mg/10 individuals per day) was the greatest. The largest absolute difference between broad-leaved tree species in the average weight of leaf litter consumed by woodlice was between maple leaf litter and oak leaf litter, the minimum – between robinia leaf litter and oak leaf litter. According to the results of the obtained data (Diplopoda), it can be stated that there is a statistically significant effect of chemical stress and discrepancy of the average zinc content in the object of study (in Diplopoda and their faecal pellets). We found that the diet provided did not affect the distribution of zinc in Diplopoda under conditions of chemical stress. According to the results of pairwise comparisons, we determined that the zinc content in the Diplopoda clearly differs for control and almost every concentration of zinc sulfate solution – 0.03 and 0.15 g/L, the samples of which do not form a homogeneous group. The species composition, abundance and distribution in space of soil invertebrates are informative indicators which reflect the ecological state of soils, intensity in development of soil horizons as well as intensity of processes occurring in them.


Alexeyeva, A. A., Lykholat, Y. V., Khromykh, N. O., Kovalenko, I. M., & Boroday, E. S. (2016). The impact of pollutants on the antioxidant protection of species of the genus Tilia at different developmental stages. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 188–192.

Andrusevich, K. V., Nazarenko, M. M., Lykholat, T. Y., & Grygoryuk, I. P. (2018). Effect of traditional agriculture technology on communities of soil invertebrates. Ukrainian Journal of Ecology, 8(1), 33–40.

Bibic, A., Drobne, D., Strus, J., & Byrne, A. (1997). Assimilation of zinc by Porcellio scaber (Isopoda, Crustacea) expozed to zinc. Bulletin of Environmental Contamination and Toxicology, 58(5), 814–821.

Brigic, A., Bujan, J., Bedek, J., Antonovic, I., Sedlar, Z., Sostaric, R., & Kepcija, R. M. (2019). Spatio-temporal changes of terrestrial isopod assemblages (Isopoda: Oniscidea) in a fen undergoing succession. Pedobiologia, 72, 16–22.

Brygadyrenko, V. V. (2014). Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecologica, 41(1), 8–16.

Brygadyrenko, V. V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192.

Brygadyrenko, V., & Ivanyshyn, V. (2015). Changes in the body mass of Megaphyllum kievense (Diplopoda, Julidae) and the granulometric composition of leaf litter subject to different concentrations of copper. Journal of Forest Science, 61(9), 369–376.

Didur, O., Kulbachko, Y., & Gasso, V. Y. (2017). Accumulation of microelements by different invertebrate trophic groups on wasted lands. Ukrainian Journal of Ecology, 7(4), 30–34.

Didur, O., Kulbachko, Y., & Maltsev, Y. (2018). Impact of tropho-metabolic activity of earthworms (Lumbricidae) on distribution of soil algae within Acer platanoides L. plantation in recultivated territories of Western Donbass (Ukraine). Ukrainian Journal of Ecology, 8(2), 18–23.

Ghemari, C., Waterlot, C., Ayari, A., Douay, F., & Nasri-Ammar, K. (2019). Effects of heavy metals artificial contamination on Porcellio laevis (Latreille, 1804) (Crustacea: Isopoda: Oniscidea). Bulletin of Environmental Contamination and Toxicology, 103(3), 416–420.

Gongalsky, K. B., Savin, F. A., Pokarzhevskii, A. D., & Filimonova, Z. V. (2005). Spatial distribution of isopods in an oak-beech forest. European Journal of Soil Biology, 41, 117–122.

Gritsan, Y. I. (2000). Ekolohichni osnovy peretvoryuyuchoho vplyvu lisovoyi roslynnosti na stepove seredovyshche [Ecological bases of transforming influence of forest vegetation on steppe environment], DNU, Dnipro (in Ukrainian).

Hassall, M., & Dangerfield, J. M. (1990). Density-dependent processes in the population dynamics of Armadillidium vulgare (Isopoda: Oniscidae). Journal of Animal Ecology, 59(3), 941–958.

Hassall, M., Tuck, J. M., Smith, D. W., Gilroy, J. J., & Addison, R. K. (2002). Effects of spatial heterogeneity on feeding behavior of Porcellio scaber (Isopoda: Oniscidea). European Journal of Soil Biology, 38, 53–57.

Horvath, G., Garamszegi, L. Z., Bereczki, J., Urszan, T. J., Balazs, G., & Herczeg, G. (2019). Roll with the fear: Environment and state dependence of pill bug (Armadillidium vulgare) personalities. Science of Nature, 106(3–4), 7.

Jaksova, P., L’uptacik, P., Miklisova, D., Horvathova, F., & Hlavata, H. (2020). Oribatida (Acari) communities in arable soils formed under waterlogged conditions: The influence of a soil moisture gradient. Biologia, 75(2), 243–257.

Johnson, S. N., Lopaticki, G., Aslam, T. J., Barnett, K. A., Frew, S. E., Hartley, I., Hiltpold, U. N., Nielsen, J., & Ryalls, M. W. (2018). Dryland management regimes alter forest habitats and understory arthropod communities. Annals of Applied Biology, 172(3), 282–294.

Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7), 1946–1957.

Klymenko, G., Kovalenko, I., Lykholat, Y., Khromykh, N., Didur, O., & Alekseeva, A. (2017). Intehralna otsinka stanu populiatsii ridkisnykh vydiv roslyn [The integral assessment of the rare plant populations]. Ukrainian Journal of Ecology, 7(2), 201–209 (in Ukrainian).

Kovacs, B., Tinya, F., & Odor, P. (2017). Stand structural drivers of microclimate in mature temperate mixed forests. Agricultural and Forest Meteorology, 234, 11–21.

Koval, V. V., Natalochka, V. O., Tkachenko, S. K., & Minenko, O. V. (2012). Dynamika zabrudnennya vod sil’s’kohospodars’koho pryznachennya solyamy vazhkykh metaliv v umovakh Poltavshchyny [Dynamics of agricultural water pollution by heavy metal salts in Poltava region]. Bulletin of the Poltava State Agrarian Academy, 1, 40–44 (in Russian).

Leclercq-Dransart, J., Pernin, C., Demuynck, S., Grumiaux, F., Lemière, S., & Leprêtre, A. (2019). Isopod physiological and behavioral responses to drier conditions: An experiment with four species in the context of global warming. European Journal of Soil Biology, 90, 22–30.

Manu, M., Honciuc, V., Neagoe, A., Bancila, R. I., Iordache, V., & Onete, M. (2019). Soil mite communities (Acari: Mesostigmata, Oribatida) as bioindicators for environmental conditions from polluted soils. Scientific Reports, 9, 20250.

Marina, I. C., Oprea, E., Gean, E., Chifiriuc, I., Carmen, M., & Lazǎr, V. (2014). Antimicrobial and antioxidant activity of the vegetative and reproductive organs of Robinia pseudoacacia. Journal of the Serbian Chemical Society, 79(11), 1363–1378.

Meentemeyer, V. (1978). Macroclimate and lignin control of litter decomposition dynamics. Ecology, 59, 465–472.

Nae, I., & Bancila, R. I. (2017). Mesovoid shallow substratum as a biodiversity hotspot for conservation priorities: analysis of oribatid mite (Acari: Oribatida) fauna. Acarologia, 57(4), 855–868.

Pakhomov, A. E., Kulbachko, Y. L., Didur, O. A., & Loza, I. (2009). Mining dump rehabilitation: The potential role of bigeminate-legged millipeds (Diplopoda) and artificial mixed-soil habitats. In: Apostol, I., Barry, D. L., Coldewey, W. G., & Reimern, D. W. G. (Ed.). Optimisation of disaster forecasting and prevention measures in the context of human and social dynamics. Vol. 52. IOS Press, Amsterdam-Berlin-Tokyo-Washington. Pp. 163–171.

Paoletti, M. G., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems & Environment, 74, 157–165.

Papp, D., Simon, E., Nagy, L., Mizser, S., & Tóthmérész, B. (2019). The effect of urbanization on trace element concentration and symmetry of woodlice (Armadillidium vulgare Latreille, 1804). Biological Trace Element Research, 189(1), 251–258.

Pey, B., Tran, C., Cruz, P., Hedde, M., Jouany, C., Laplanche, C., Nahmani, J., Chauvet, E., & Lecerf, A. (2018). Nutritive value and physical and chemical deterrents of forage grass litter explain feeding performances of two soil macrodetritivores. Applied Soil Ecology, 133, 81–88.

Pokhylenko, A., Lykholat, O., Didur, O., Kulbachko, Y., & Lykholat, T. (2019). Morphological variability of Rossiulus kessleri (Diplopoda, Julida) from different biotopes within steppe zone of Ukraine. Ukrainian Journal of Ecology, 9(1), 176–182.

Quadros, A. F., & Araujo, P. B. (2008). An assemblage of terrestrial isopods (Crustacea) in Southern Brazil and its contribution to leaf litter processing. Revista Brasileira de Zoologia, 25(1), 58–66.

Roy, S. N., & Joy, V. C. (2009). Dietary effects of non-nutrients in the leaf litter of forest trees on assimilation, growth and tissue composition of the detritivorous soil arthropod Anoplodesmus saussurei (Humb.) (Polydesmida: Diplopoda). Applied Soil Ecology, 43, 53–60.

Rushton, S. P., & Hassall, M. (1987). Effects of food quality on isopod population dynamics. Functional Ecology, 1(4), 359–367.

Schmalfuss, H. (2000). Distributional patterns in the Greek species of the terrestrial isopod genus Armadillidium Brandt, 1833. Belgian Journal of Zoology, 130(Suppl. 1), 75–80.

Schmalfuss, H. (2003). World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitrage zur Naturkunde. Serie A. Vol. 654.

Semenov, D. O., Fatjejev, A. I., Smirnova, K. B., Shemet, A. M., Lykova, O. A., Tyutyunnyk, N. V., & Pogromska, I. A. (2019). Geochemical and anthropogenic factors of variability of heavy metals content in the soils and crops of Ukraine at the example of copper. Environmental Monitoring and Assessment, 8, 527.

Semenyuk, I. I., & Tiunov, A. V. (2011). Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest. Biological Bulletin, 38, 283–291.

Sfenthourakis, S., & Hornung, E. (2018). Isopod distribution and climate change. Zookeys, 801, 25–61.

Shulman, M. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecologica, 44(1), 28–37.

Solomou, A. D., Sfougaris, A. I., & Sfenthourakis, S. (2019). Terrestrial isopods as bioindicators for environmental monitoring in olive groves and natural ecosystems. Journal of Natural History, 53, 1721–1735.

Spaldonova, A., & Frouz, J. (2019). Decomposition of forest litter and feces of Armadillidium vulgare (Isopoda: Oniscidea) produced from the same litter affected by temperature and litter quality. Forests, 10(11), 939.

Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., & Zaitsev, A. S. (2001). Metal concentration in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia, 45(5), 451–466.

Striganova, B. R. (1980). Pitanie pochvennyh saprofagov [The feeding of soil saprophages]. Nauka, Moscow (in Russian).

Svyrydchenko, A. O., & Brygadyrenko, V. V. (2014). Trophic preferences of Rossiulus kessleri (Diplopoda, Julidae) for the litter of various tree species. Folia Oecologica, 41, 202–212.

Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsuki, K., Shimamura, T., Xue, Z. D., Wang, S. Q., & Hou, Q. C. (2007). Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology and Management, 241, 84–90.

van Gestel, C. A. M., Loureiro, S., & Zidar, P. (2018). Terrestrial isopods as model organisms in soil ecotoxicology: A review. Zookeys, 801, 127–162.

Vasconcelos, H. L., & Laurance, W. F. (2005). Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia, 144, 456–462.

Yang, X., Shao, M. A., & Li, T. C. (2020). Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma, 376, 114546.

Zhang, G. J., Li, Y., Xu, Z. H., Jiang, J. Z., Han, F. B., & Li, J. H. (2012). The chemical composition and ruminal degradation of the protein and fibre of tetraploid Robinia pseudoacacia harvested at different growth stages. Journal of Animal and Feed Sciences, 21(1), 177–187.


Most read articles by the same author(s)