Soluble cuticular wax composition and antimicrobial activity of the fruits of Chaenomeles species and an interspecific hybrid

  • Y. V. Lykholat Oles Honchar Dnipro National University
  • N. O. Khromykh Oles Honchar Dnipro National University
  • O. O. Didur Oles Honchar Dnipro National University
  • S. I. Okovytyy Oles Honchar Dnipro National University
  • T. V. Sklyar Oles Honchar Dnipro National University
  • V. R. Davydov Oles Honchar Dnipro National University
  • T. Y. Lykholat Oles Honchar Dnipro National University
  • I. M. Kovalenko Oles Honchar Dnipro National University
Keywords: Chaenomeles japonica; Chaenomeles speciosa; Chaenomeles × superba; fruits; cuticular wax; fatty acids; aldehydes; alkanes; antimicrobial ability


Plants of the genus Chaenomeles Lindl. (Rosaceae) naturally grow in Southeast Asia and represent the richest resource of biologically active compounds with beneficial properties for humans. Plants of C. japonica (Thunb.) Lindl. and C. speciosa (Sweet) Nakai species, and interspecific hybrid C. × superba (Frahm) Rehder (C. japonica × C. speciosa, Superba group) have been successfully introduced in the steppe zone of Ukraine and bear fruits. In this study, we evaluated chemical composition of fruit cuticular waxes and antimicrobial activity of fruit extracts. The soluble waxes were characterized using gas chromatography-mass spectrometry (GC-MS), and 26–36 compounds, representing 91.7–96.6% of the total soluble cuticular waxes, were identified. Waxes of Chaenomeles fruits belonged to six classes, namely fatty acids, alcohols, aldehydes, esters, ethers and alkanes. Aldehydes 7-hexadecenal and heptacosanal, and alkanes hexatriacontane and tetrapentacontane were the main constituents in the soluble cuticular waxes of C. speciosa and C. × superba fruits, accounting for more than half of the total contents. However, alkane tetrapentacontane, alcohol 8,10-hexadecadien-1-ol and heptacosanal prevailed in C. japonica fruit waxes. Isopropanolic fruit extracts exhibited dose-dependent antimicrobial activity against four Gram-negative bacteria, five Gram-positive bacteria and one fungal strain in the disc diffusion assay. In general, extracts from the Chaenomeles fruits demonstrated higher activity against Gram+ bacteria than Gram- strains. The strongest inhibiting activity was shown against Staphylococcus epidermidis (by the fruit extracts of C. × superba and C. speciosa), Micrococcus lysodeikticus and Candida albicans (both by C. × superba fruit extract). Results of the study confirmed accumulation of the bioactive compounds in the fruit waxes of different Chaenomeles species and antimicrobial ability of Chaenomeles fruits as well. These findings revealed the bioactive compounds in fruit cuticular waxes and suggested health-promoting properties of introduced Chaenomeles species.


Ashakirin, S. N., Tripathy, M., Patil, U. K., & Majeed, A. B. A. (2017). Chemistry and bioactivity of cinnamaldehyde: A natural molecule of medicinal impor-tance. International Journal of Pharmaceutical Sciences and Research, 8(6), 2333–2340.

Belge, B., Llovera, M., Comabella, E., Graell, J., & Lara, I. (2014). Fruit cuticle composition of a melting and a nonmelting peach cultivar. Journal of Agricul-tural and Food Chemistry, 62, 3488–3495.

Bhimba, B. V., Pushpam, A. C., Arumugam, P., & Prakash, S. (2012). Phthalate derivatives from the marine fungi Phoma herbarum VB7. International Journal of Biological and Pharmaceutical Research, 3(4), 507–512.

Buschhaus, C., Herz, H., & Jetter, R. (2007). Chemical composition of the epicuticu-lar and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 100(6), 1557–1564.

Diab, T. A., Donia, T., & Saad-Allah, K. M. (2021). Characterization, antioxidant, and cytotoxic effects of some Egyptian wild plant extracts. Beni-Suef Universi-ty Journal of Basic and Applied Sciences, 10, 13.

Dilika, F., Bremner, P. D., & Meyer, J. J. M. (2000). Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: Plant used during cir-cumcision rites. Fitoterapia, 71, 450–452.

Ding, S., Zhang, J., Yang, L., Wang, X., Fu, F., Wang, R., Zhang, Q., & Shan, Y. (2020). Changes in cuticle components and morphology of 'Satsuma' Mandarin (Citrus unshiu) during ambient storage and their potential role on Penicillium digitatum infection. Molecules, 25(2), 412.

Doyle, A. A., & Stephens, J. C. (2019). A review of cinnamaldehyde and its deriva-tives as antibacterial agents. Fitoterapia, 139(11), 104405.

Du, H., Wu, J., Li, H., Zhong, P. X., Xu, Y. J., Li, C. H., Ji, K. X., & Wang, L. S. (2013). Polyphenols and triterpenes from Chaenomeles fruits: Chemical analy-sis and antioxidant activities assessment. Food Chemistry, 141, 4260–4268.

Fernandes, C. P., Corrêa, A. L., Lobo, J. F. R., Caramel, O. P., de Almeida, F. B., Castro, E. S., Souza, K. F. C. S., Burth, P., Amorim, L. M. F., Santos, M. G., Ferreira, J. L. P., Falcão, D. Q., Carvalho, J. C. T., & Rocha, L. (2013). Triter-pene esters and biological activities from edible fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae. BioMed Research International, 2013, 280810.

Fernández, V., Guzmán-Delgado, P., Graça, J., Santos, S., & Gil, L. (2016). Cuticle structure in relation to chemical composition: Re-assessing the prevailing mod-el. Frontiers in Plant Science, 7, 427.

Hao, S., Ma, Y., Zhao, S., Ji, Q., Zhang, K., Yang, M., & Yao, Y. (2017). McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. PLoS One, 12(10), e0186996.

Kikowska, M., Włodarczyk, A., Rewers, M., Sliwinska, E., Studzinska-Sroka, E., Witkowska-Banaszczak, E., & Thiem, B. (2019). Micropropagation of Chae-nomeles japonica: A step towards production of polyphenol-rich extracts showing antioxidant and antimicrobial activities. Molecules, 24(7), 1314.

Kosma, D. K., Bourdenx, B., Bernard, A., Parsons, E. P., Lu, S., Joubes, J., & Jenks, M. A. (2009). The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology, 151(4), 1918–1929.

Lazniewska, J., Macioszek, V., & Kononowicz, A. (2012). Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30.

Lotfy, M. M., Hassan, H. M., Hetta, M. H., El-Gendy, A. O., & Mohammed, R. (2018). Di(2-ethylhexyl) phthalate, a major bioactive metabolite with antimi-crobial and cytotoxic activity isolated from River Nile derived fungus Aspergil-lus awamori. Beni-Suef University Journal of Basic and Applied Sciences, 7(3), 263–269.

Lykholat, Y. V, Khromykh, N. O., Lykholat, T. Y., Didur, O. O., Lykholat, O. A., Legostaeva, T. V., Kabar, A. M., Sklyar, T. V., Savosko, V. M., Kovalenko, I. M., Davydov, V. R., Bielyk, Y. V., Volyanik, K. O., Onopa, A. V., Dudkina, K. A., & Grygoryuk, I. P. (2019). Industrial characteristics and consumer properties of Chaenomeles Lindl. fruits. Ukrainian Journal of Ecology, 9(3), 132–137.

Lykholat, Y. V., Khromykh, N. O., Didur, O. O, Davydov, V. R., Sklyar, T. V., Drehval, O. A., Vergolyas, M. R., Verholias, O. O., Marenkov, O. M., Naza-renko, M. M., Lavrentieva, K. V., Kurahina, N. V., Lykholat, O. A., Legostae-va, T. V., Zaytseva, I. O., Kabar, A. M., & Lykholat, T. Y. (2021). Features of the fruit epicuticular waxes of Prunus persica cultivars and hybrids concerning pathogens susceptibility. Ukrainian Journal of Ecology, 11(1), 261–266.

Lykholat, Y. V., Khromykh, N. O., Pirko, Y. V., Alexeyeva, A. A., Pastukhova, N. L., & Blume, Y. B. (2018). Epicuticular wax composition of leaves of Tilia L. trees as a marker of adaptation to the climatic conditions of the Steppe Dnie-per. Cytology and Genetics, 52(5), 323–330.

Martin, L. B., & Rose, J. K. (2014). There’s more than one way to skin a fruit: Formation and functions of fruit cuticles. Journal of Experimental Botany, 65(16), 4639–4651.

Miao, J., Zhao, C., Li, X., Chen, X., Mao, X., Huang, H., Wang, T., & Gao, W. (2016). Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. Journal of Food Science, 81, H2049–H2058.

Moskalets, T. Z., Moskalets, V. V., Vovkohon, A. H., Shevchuk, O. A., & Matvii-chuk, O. A. (2019). Modern breeding and cultivation of unpopular fruits and berries in Ukraine. Ukrainian Journal of Ecology, 9(3), 180–188.

Rebora, M., Salerno, G., Piersanti, S., Gorb, E., & Gorb, S. (2020). Role of fruit epicuticular waxes in preventing Bactrocera oleae (Diptera: Tephritidae) at-tachment in different cultivars of Olea europaea. Insects, 11, 189.

Rios, J. C., Robledo, F., Schreiber, L., Zeisler, V., Lang, E., Carrasco, B., & Silva, H. (2015). Association between the concentration of n-alkanes and tolerance to cracking in commercial varieties of sweet cherry fruits. Scientia Horticulturae, 197(14), 57–65.

Rumpunen, K. (2002). Chaenomeles: Potential new fruit crop for Northern Europe. In: Janick, J., & Whipkey, A. (Eds.). Trends in new crops and new uses. ASHS Press, Alexandria. Pp. 385–392.

Tomasi, P., Dyer, J. M., Jenks, M. A., & Abdel-Haleem, H. (2018). Characterization of leaf cuticular wax classes and constituents in a spring Camelina sativa diver-sity panel. Industrial Crops and Products, 112, 247–251.

Trivedi, P., Nguyen, N., Hykkerud, A. L., Häggman, H., Martinussen, I., Jaakola, L., & Karppinen, K. (2019). Developmental and environmental regulation of cuti-cular wax biosynthesis in fleshy fruits. Frontiers in Plant Science, 10, 431.

Urbanaviciute, I., Liaudanskas, M., Bobinas, C., Šarkinas, A., Rezgiene, A., Viskelis, P. (2020). Japanese quince (Chaenomeles japonica) as a potential source of phenols: Optimization of the extraction parameters and assessment of antiradi-cal and antimicrobial activities. Foods, 9, 1132.

Walters, D., Raynor, L., Mitchell, A., Walker, R., & Walker, K. (2004). Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia, 157(1), 87–90.

Wang, J., Hao, H., Liu, R., Ma, Q., Xu, J., Chen, F., Cheng, Y., & Deng, X. (2014). Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and ‘Newhall’ navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chemistry, 153, 177–185.

Wu, X., Yin, H., Shi, Z., Chen, Y., Qi, K., Qiao, X., Wang, G., Cao, P., & Zhang, S. (2018). Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 Pear (Pyrus spp.) cultivars. Frontiers in Plant Science, 9, 679.

Xianfei, X., Xiaoqiang, C., Shunying, Z., & Guolin, Z. (2007). Chemical composi-tion and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chemistry, 100(4), 1312–1315.

Xue, D., Zhang, X., Lu, X., Chen, G., & Chen, Z.-H. (2017). Molecular and evolu-tionary mechanisms of cuticular wax for plant drought tolerance. Frontiers in Plant Science, 8, 621.

Yang, L., Ahmed, S., Stepp, J. R., Zhao, Y., Zeng, M. J., Pei, S., Xue, D., & Xu, G. (2015). Cultural uses, ecosystem services, and nutrient profile of flowering quince (Chaenomeles speciosa) in the highlands of Western Yunnan, China. Economic Botany, 69(3), 273–283.

Zhang, S. Y., Han, L. Y., Zhang, H., & Xin, H. L. (2014). Chaenomeles speciosa: A review of chemistry and pharmacology. Biomedical Reports, 2, 12–18.

Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., & Kim, W. G. (2005). Fatty acids synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157–5162.

Zheng, X., Wang, H., Zhang, P., Gao, L., Yan, N., Li, P., Liu, X., Du, Y., & Shen, G. (2018). Chemical composition, antioxidant activity and α-glucosidase inhibitory activity of Chaenomeles speciosa from four production areas in China. Molecules, 23(10), 2518.

Zvikas, V., Urbanaviciute, I., Bernotiene, R., Kulakauskiene, D., Morkunaite, U., Balion, Z., Majiene, D., Liaudanskas, M., Viskelis, P., Jekabsone, A., & Jakstas, V. (2021). Investigation of phenolic composition and anticancer properties of ethanolic extracts of japanese quince leaves. Foods, 10(1), 18.