Biotic links in the fouling community of Odessa Bay (Black Sea)


  • A. Y. Varigin Institute of Marine Biology of NASU
Keywords: Black Sea mussel; edificator species; fouling community; consortia; ecosystem engineer

Abstract

This paper reveals the character of the biotic links between the various organisms that compose the fouling community of Odessa Bay (Black Sea). The fouling community of solid substrates is formed by 62 species of invertebrates and 12 species of macrophytes. The edificator species of the community is the Black Sea mussel Mytilus galloprovincialis Lamarck, 1819. The environment-forming role of the mussel, which is represents the core of the corresponding consortia, was examined. The leading role of sessile organisms in the formation of a superorganismic structure that significantly modifies the properties of the environment was revealed. Together with the mussel, this structure is formed by the bivalve mollusc Mytilaster lineatus (Gmelin, 1791) and the barnacle crustacean Amphibalanus improvisus (Darwin, 1854). The proportion of sessile organisms accounts for 24.6% of the total number of species in the community. In this case, they significantly dominate in relative abundance and biomass (78.9% and 98.8%, respectively). The mussels during the process of growth form complexly organized druses, which are peculiar three-dimensional formations, consisting of mussels of different sizes, fastened together with a substrate by an entire network of strong byssus threads. These formations increase the level of heterogeneity of the substrate and increase the variety of available habitats for other animals. The aggregate of these druses is a kind of sedimentary trap in which particles of nutritive detritus accumulate. The availability of accessible habitats, convenient shelters and food reserves attracts various species of invertebrates to the community. Around the core of the consortia a cluster of organisms formed associated with edificator species. An important role is played by trophic links between different mobile organisms and the phyto-component of the community. The ability of the Black Sea mussel to condition the environment, creating favourable conditions for the development of other organisms, characterizes it as an autogenic ecosystem engineer. Trophic and mediopathic links between the organisms that compose the fouling community go beyond it and extend to the inhabitants of the pelagic environment.

References

Arribas, L. P., Donnarumma, L., Palomo, M. G., & Scrosati, R. A. (2014). Intertidal mussels as ecosystem engineers: Their associated invertebrate biodiversity under contrasting wave exposures. Marine Biodiversity, 44, 203–211.


Beklemishev, V. N. (1951). O klassifikacii biocenoticheskih (simfiziologicheskih) svjazej [On the classification of biocenotic (symphysiological) links]. Bulle tin of the Moscow Society of Nature Researchers, Department of Biology, 56(5), 3–30 (in Russian).


Borthagaray, A., & Carranza, A. (2007). Mussels as ecosystem engineers: Their contribution to species richness in a rocky littoral community. Acta Oecolo gica, 32, 243–250.


Bouma, T. J., Olenin, S., Reise, R., & Ysebaert, T. (2009). Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgoland Marine Research, 63, 95–106.


Brajko, V. D. (1974). Nekotorye sukcessivnye zakonomernosti v soobshhestve makroobrastanij [Some successive regularities in the macrofouling commu nity]. Oceanology, 14(2), 345–348.


Brajko, V. D. (1979). Metabolity midij i rol' ih v modifikacii mikrouslovij cenoza obrastanij [Metabolites of mussels and their role in modification of microcon ditions in fouling cenosis]. Biology of Sea, 48, 9–15.


Brajko, V. D. (1985). Obrastanie v Chernom more [Fouling in the Black Sea]. Naukova Dumka, Kyiv (in Russian).


Bykov, B. A. (1988). Ekologicheskij slovar' [Ecological dictionary]. Nauka, Alma-Ata (in Russian).


Cole, V. J. (2010). Alteration of the configuration of bioengineers affects associa ted taxa. Marine Ecology Progress Series, 416, 127–136.


Crooks, J. A. (2002). Characterizing ecosystem-level consequences of biological invasions: The role of ecosystem engineers. Oikos, 97, 153–166.


Dylis, N. V. (1973). O strukture konsorcij [On the structure of consortia]. Journal of Common Biology, 34(4), 575–580 (in Russian).


Galkina, V. N. (1982). Metabolity midij (Mytilus edulis) v sostave rastvorennogo organicheskogo veshhestva morskoj vody [Metabolites of mussels (Mytilus edulis) in the composition of dissolved organic matter of sea water]. Ocea nology, 22(1), 125–129 (in Russian).


Golubets, M. A., & Chornobaj, Y. M. (1983). Konsorcija jak elementarna ekolo gichna systema [Consortia as an elementary ecological system]. Ukrainian Botanical Journal, 40, 23–28 (in Ukrainian).


Govorin, I. A. (1993). Bakterial'naja obsemenennost' agregirovannyh vydelenij chernomorskih midij i sanitarno-jekologicheskoe znachenie biootlozhenij kul'tiviruemyh molljuskov [Bacterial contamination of the aggregated secre tions of the Black Sea mussels and the sanitary and ecological significance of the bio-depositions of cultivated mollusks]. Biology of Sea, 19(1), 90–97 (in Russian).


Greze, I. I. (1965). O sutochnyh vertikal'nyh migracijah nekotoryh bokoplavov v Chernom i Azovskom morjah [On the daily vertical migrations some amp hipods in the Black and Azov Seas]. Naukova Dumka, Kyiv (in Russian).


Greze, I. I. (1973). Pitanie amfipod Chernogo morja [Feeding of the Black Sea amphipods]. Nauka, Moscow (in Russian).


Greze, I. I. (1977). Amfipody Chernogo morja i ih biologija [Amphipods of the Black Sea and their biology]. Naukova Dumka, Kyiv (in Russian).


Gutierrez, J. L., Jones, C. G., Strayer, D. L., & Iribarne, O. (2003). Mollusks as ecosystems engineers: The role of the shell production in aquatic habitats. Oikos, 101, 79–90.


Halaman, V. V. (1998). Soprjazhennost' prostranstvennyh raspredelenij organizmov v Belomorskih soobshhestvah obrastanija [Conjugation of spatial distributi ons of organisms in the White Sea fouling communities]. Journal of Com mon Biology, 59(1), 58–73 (in Russian).


Hernandez-Aliva, I., Tagliafico, A., Rago, N., & Marcano, J. (2012). Composition of decapod crustacean assemblages in beds of Pinctada imbricata and Arca zebra (Mollusca: Bivalvia) in Cubagua Island, Venezuela: Effect of bed density. Scientia Marina, 76(4), 705–712.


Jacobi, C. M. (1987). Spatial and temporal distribution of Amphipoda associated with mussel beds from the Bay of Santos (Brazil). Marine Ecology Progress Series, 35, 51–58.


Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engi neers. Oikos, 69, 373–386.


Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7), 1946–1957.


Jones, C. G., Gutierrez, J. L., Byers, J. E., Crooks, J. A., Lambrinos, J. G., & Talley, T. S. (2010). A framework for understanding physical ecosystem enginee ring by organisms. Oikos, 119, 1862–1869.


Kashin, I. A., Bagaveeva, E. V., & Chaplygin, S. F. (2003). Soobshestva obrasta nija gidrotehnicheskih sooruzhenij v zalive Nahodka (Japonskoe more) [Fouling communities of hydraulic structures in the Nakhodka Bay (Sea of Japan)]. Biology of Sea, 29(5), 307–319 (in Russian).


Kautsky, N. (1982). Quantitative studies on gonad cycle, fecundity, reproductive output and recruitment in a Baltic Mytilus edulis population. Marine Biology, 68(2), 143–160.


Kautsky, N., & Evans, S. (1987). Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series, 38, 201–212.


Kharchenko, T. A., & Zorina-Sakharova, E. E. (2000). Konsorcija dvustvorchatyh molljuskov litorali ravninnogo vodohranilishha kak strukturno-funkcional'na ja sovokupnost' gidrobiontov [Consortia of bivalve mollusks of the littoral of the plain reservoir as a structural and functional aggregate of hydrobionts]. Hydrobiological Journal, 36(5), 9–17 (in Russian).


Kharchenko, T. A., & Protasov, A. A. (1981). O konsorcijah v vodnyh jekosiste mah [On consortia in aquatic ecosystems]. Hydrobiological Journal, 17(4), 15–20 (in Russian).


Khaylov, K. M. (1971). Ekologicheskij metabolizm v more [Ecological metabo lism in the sea]. Naukova Dumka, Kyiv (in Russian).


Khmeleva, N. N. (1973). Biologija i energeticheskij balans morskih ravnonogih ra koobraznyh (Idotea baltica basteri) [Biology and energy balance of marine iso pod crustaceans (Idotea baltica basteri)]. Naukova Dumka, Kyiv (in Russian).


Kiseleva, M. I. (2004). Mnogoshhetinkovye chervi (Polychaeta) Chernogo i Azov skogo morej [Polychaetes (Polychaeta) of the Black and Azov Seas]. Kola Scientific Center of the Russian Academy of Sciences, Apatity (in Russian).


Laihonen, P., & Furman, E. R. (1986). The site of attachment indicates commen salism between blue mussel and its epibiont. Oecologia, 71, 38–40.


Makarov, Y. N. (2004). Desjatinogie rakoobraznye [Decapod crustaceans]. Nau kova Dumka, Kyiv (in Russian).


Mazing, V. V. (1966). Konsorcii kak jelementy struktury biocenozov [Consortias as elements of the structure of biocenoses]. Proceedings of the Moscow So ciety of Nature Researchers, 27, 117–127 (in Russian).


Miyamoto, Y., & Noda, T. (2004). Effects of mussels on competitively inferior species: Competitive exclusion to facilitation. Marine Ecology Progress Series, 276, 293–298.


Moschenko, A. V. (2006). Rol' mikromasshtabnoj turbulentnosti v raspredelenii i izmenchivosti bentosnyh zhivotnyh [Role of microscale turbulence in the distribution and variability of benthic animals]. Dal'nauka, Vladivostok (in Russian).


Negrobov, V. V., & Khmelev, K. F. (2000). Sovremennye koncepcii konsorcio logii [Modern concepts of consortiology]. Bulletin of Voronezh State Uni versity. Series: Chemistry and Biology, 118–121 (in Russian).


Norling, P., & Kautsky, N. (2007). Structural and functional effects of Mytilus edulis on diversity of associated species and ecosystem functioning. Marine Ecology Progress Series, 351, 163–175.


Oshurkov, V. V. (1986). Razvitie i struktura nekotoryh soobshhestv obrastanija v Avachinskom zalive [Development and structure of some fouling communi ties in the Avacha Bay]. Biology of Sea, 5, 20–27 (in Russian).


Propp, L. N. (1970). O sezonnoj dinamike vitamina B12 i izmenchivosti fitoplank tona v Dal'nezeleneckoj gube Barenceva morja [On the seasonal dynamics of vitamin B12 and the variability of phytoplankton in the Dalenezelenec Bay of the Barents Sea]. Oceanology, 10(5), 851–857 (in Russian).


Protasov, A. A. (2006). O topicheskih otnoshenijah i konsortivnyh svjazjah v so obshhestvah [On the topical relations and consortia links in communities]. Siberian Ecological Journal, 1, 97–103 (in Russian).


Protasov, A. A., Yurishinets, V. I., & Morozovskaya, I. A. (2010). Konsorcija i konsortivnye otnoshenija v gidrobiocenozah [Consortia and consortias rela tions in hydrobiocenoses]. Hydrobiological Journal, 46(3), 3–18 (in Russian).


Rabotnov, T. A. (1973). Nekotorye voprosy izuchenija konsorcij [Some issues of stu dying consortia]. Journal of Common Biology, 34(3), 407–416 (in Russian).


Rachinskaya, A. V., & Polchenko, E. A. (2001). Obrastanija mikroskopicheskimi vodorosljami tverdyh substratov Odesskogo zaliva Chernogo morja [Fouling microscopic algae of the solid substrates in Odessa Bay, Black Sea]. Scienti fic Notes of Ternopol State Pedagogical University. Series: Biology, 15(4), 151–153 (in Russian).


Ramensky, L. G. (1952). O nekotoryh principial'nyh polozhenijah sovremennoj geobotaniki [On some principal provisions of modern geobotany]. Botanical Journal, 37, 181–201 (in Russian).


Soloveva, A. A., Galkina, V. N., & Garkavaya, G. P. (1977). Eksperimental'noe izuchenie vlijanija rastvorennogo organicheskogo veshhestva metabolitov midij na prirodnoe soobshhestvo fitoplanktona Belogo morja [Experimental study of the effect of dissolved organic matter of mussel metabolites on the natural community of the White Sea phytoplankton]. Oceanology, 18(5), 918–925 (in Russian).


Sushenia, L. M. (1968). Detrit i ego rol' v produkcionnom processe v vodoemah [Detritus and its role in the production process in water bodies]. Hydrobiolo gical Journal, 4(2), 77–84 (in Russian).


Svane, I., & Setyobudiandi, I. (1996) Diversity of associated fauna in beds of the blue mussel Mytilus edulis L.: Effects of location, patch size, and position within the patch. Ophelia, 45, 39–54.


Thiel, M., & Ulrich, N. (2002). Hard rock versus soft bottom: The fauna associa ted with intertidal mussel beds on hard bottom along the coast of Chile, and considerations on the functional role of mussel beds. Helgoland Marine Research, 56, 21–30.


Tokeshi, M. (1995). Polychaete abundance and dispersion patterns in mussel beds: A non-trivial infaunal assemblage on a Pacific South American rocky shore. Marine Ecology Progress Series, 125, 137–147.


Tsaryk, J. V., & Tsaryk, I. J. (2002). Konsorcija jak zagal'nobiotychne javyshhe [Consortia as a general biotic phenomenon]. Visnyk of Lviv University. Series: Biology, 28, 163–169 (in Ukrainian).


Tsaryk, J. V., & Tsaryk, I. J. (2008). Topichni ta fabrychni zv’jazky v konsorcii', i'h znachennja u zberezhenni biotychnogo riznomanittja [Consortium topical and fabric links and their role in biotic diversity preservation]. Studia Bio logica, 2(1), 71–76 (in Ukrainian).


Tsuchiya, M., & Nishihira, M. (1986). Islands of Mytilus edulis as a habitat for small intertidal animals: Effect of Mytilus age structure on the species com position of the associated fauna and community organization. Marine Ecology Progress Series, 31, 171–178.


Voronov, A. G. (1974). K ponjatiju o konsorcijah [On the notion of consortia]. Journal of Common Biology, 35(2), 236–241 (in Russian).


Wright, J. P., & Jones, C. G. (2006). The concept of organism as ecosystem engi neers ten years on: Progress, limitations and challenges. BioScience, 56(3), 203–209.


Yager, P. L., Nowell, A. R., & Jumars, P. A. (1993). Enhanced deposition to pits: A local source for benthos. Journal of Marine Research, 51(1), 209–236.


Zaika, V. E., Valovaja, N. A., Povchun, A. S., & Revkov, N. K. (1990). Mitilidy Cher nogo morja [Mitilids of the Black Sea]. Naukova Dumka, Kyiv (in Russian).


Zaiko, A., Daynys, D., & Olenin, S. (2009). Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: Im pact on biodiversity. Helgoland Marine Research, 63, 85–94.


Zakutsky, V. P. (1965). “Domiki” Balanus improvisus kak ubezhishha dlja drugih organizmov ["Houses" of Balanus improvisus as a refuge for other orga nisms]. Zoological Journal, 44(7), 1092 (in Russian).


Zvyagintsev, A. Y. (2005). Morskoe obrastanie v severo-zapadnoj chasti Tihogo okeana [Marine fouling in the northwestern part of the Pacific Ocean]. Dal'nauka, Vladivostok (in Russian).

Published
2018-02-15
Section
Articles