Contamination of animal-keeping premises with eggs of parasitic worms

Keywords: pig-breeder; shepherd; cow; cynological center; exogenous stages of development of helminthes


Today, one of the important problems in the cultivation and maintenance of agricultural and domestic animals, both in industrial and private farms, is the spread of ecto- and endoparasites, which cause a significant decline in animal productivity, endanger their health and cause economic losses. The study of the level of distribution and conducting of diagnostic studies on parasitoses of animals in farms with different production orientation is an important and integral part of the overall complex of preventive and health-improving measures. The research was carried out during 2007–2017 in livestock enterprises of Kharkiv Oblast. As a part of the research work, 540 samples were collected from livestock farms, of which 180 were from the premises for keeping pigs, 100 from premises for keeping sheep, 120 from premises for keeping cattle, 80 from premises for dogs and 60 – from the surrounding territories of the livestock enterprises. We found that the objects of livestock rearing (pig complex, sheep farm, dairy farm, cynological center) in Kharkiv Oblast have a significant level of sanitary contamination with exogenous forms of helminths (21.7–45.6%) and the soil of the territories (20.0–36.6%). From samples taken from premises for pigs, eggs of four morphotypes were isolated (Ascaris suum – 5.3%, Trichuris suis – 14.6%, Oesophagostomum dentatum – 60.6%, Strongyloides ransomi – 19.4%), from premises for sheep – three morphotypes (Dicrocoelium lanceatum – 3.8%, Trichuris ovis – 29.3%, Strongylata spp. – 46.9%), from premises for cows – three morphotypes (Neoascaris vitulorum – 2.7%, Trichuris skrjabini – 12.9%, Strongylata spp. – 34.5%), premises for dogs – four morphotypes (Toxocara canis – 6.1%, Toxascaris leonina – 5.4%, Trichuris vulpis – 20.6%, Ancylostoma caninum – 17.5%). It should be noted that the places most contaminated with eggs of helminths were manure gutters (100%) and the floor of livestock buildings (50.0–86.7%). It has also been determined that, in the conditions of the cynological center, the Musca domestica was the source of environmental contamination with exogenous forms of Toxocara canis and Trichuris vulpis, and that the Muscina stabulans and Stomoxys calcitrans can be the source of spread of larvae of Ancylostoma caninum and eggs of Trichuris vulpis respectively.


Amadi, E., & Uttah, E. (2010). Impact of physico-chemical factors of contaminated foci on the survival of geohelminths in Abua Communities, Niger Delta Nigeria. Journal of Applied Science and Environmental Management, 14(4), 117–121.

Antropov, V. A., & Sidorova, K. A. (2007). Ekonomicheskiy ushcherb, prichinyayemyy askaridozom svinovodstvu [Economic damage caused by ascaridosis in pigs]. Bulletin of the Tyumen State Agricultural Academy, 2(3), 121–122 (in Russian).

Armour, J., & Urquhart, G. M. (1965). The control of helminthiasis in ruminants. British Veterinary Journal, 121(9), 392–397.

Backhans, A., & Fellström, C. (2012). Rodents on pig and chicken farms – a potential threat to human and animal health. Infection Ecology and Epidemiology, 2, e17093.

Blaszkowska, J., Kurnatowski, P., & Damiecka, P. (2011). Contamination of the soil by eggs of geohelminthhs in rural areas of Lodz district (Poland). Helminthhologia, 48(2), 67–76.

Boes, J., Willingham, A. L., Fuhui, S., Xuguang, H., Eriksen, L., Nansen, P., & Stewart, T. B. (2000). Prevalence and distribution of pig helminths in the Dongting Lake Region (Hunan Province) of the People's Republic of China. Journal of Helminthology, 74(1), 45–52.

Boyko, A., Brygadyrenko, V., Shendryk, L., & Loza, I. (2009). Estimation of the role of antropo-zoonosis invasion agents in the counteraction to bioterrorism. Counteraction to Chemical and Biological Terrorism in East European Countries. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer Nature, 309–315.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Chammartin, F., Scholte, R. G., Guimaraes, L. H., Tanner, M., Utzinger, J., & Vounatsou, P. (2013). Soil-transmitted helminth infection in South America: A systematic review and geostatistical meta-analysis. The Lancet Infectious Diseases, 13(6), 507–518.

Charlier, J., De Waele, V., Ducheyne, E., van der Voort, M., Vande Velde, F., & Claerebout, E. (2016). Decision making on helminths in cattle: Diagnostics, economics and human behaviour. Irish Veterinary Journal, 69, 14.

Charlier, J., van der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367.

Christensen, J. (2001). Epidemiological concepts regarding disease monitoring and surveillance. Acta Veterinaria Scandinavica, Supplementum, 94, 11–16.

Daxno, I. S., & Daxno, Y. I. (2010). Ekolohichna hel’mintolohiya [Ecological Helminthology]. Sumy (in Ukrainian).

Dolbin, D. A., & Khayrullin, R. Z. (2017). Resistance of helminth eggs to unfavorable physical, chemical and biological factors of the environment (Literature review). Russian Journal of Parasitology, 39(1), 14–19.

Eysker, M., & Ploeger, H. W. (2000). Value of present diagnostic methods for gastrointestinal nematode infections in ruminants. Parasitology, 120(Suppl), 109–119.

Graves, A., Weaver, R. W., & Entry, J. (2009). Characterization of Enterococci populations in livestock manure using Biolog. Microbiological Research, 164, 260–266.

Greenland, K., Dixon, R., Khan, S. A., Gunawardena, K., Kihara, J. H., Smith, J. L., Drake, L., Makkar, P., Raman, S., Singh, S., & Kumar, S. (2015). The epidemiology of soil-transmitted helminths in Bihar state, India. PLoS Neglected Tropical Diseases, 9(5), e0003790.

Holzhauer, M., van Schaik, G., Saatkamp, H. W., & Ploeger, H. W. (2011). Lungworm outbreaks in adult dairy cows: Estimating economic losses and lessons to be learned. The Veterinary Record, 169(19), 494.

Hutchison, M. L., Walters, L. D., Avery, S. M., Munro, F., & Moore, A. (2005). Analyses of livestock production, waste storage and pathogen levels and prevalences in farm manures. Applied and Environmental Microbiology, 71, 1231–1236.

Ivanuk, V. P., & Bobkova, G. N. (2016). Epizootologiya kishechnykh nematodozov sviney v khozyaystvakh tsentral'nogo federal'nogo okruga RF [Epizootology of intestinal nematodoses of pigs in the economies of the central federal district of the Russia]. Vestnik of the Bryan State Agricultural Academy, 58(6), 86–91 (in Russian).

Karshima, S. N., Maikai, B. V., & Kwaga, J. K. P. (2018). Helminths of veterinary and zoonotic importance in Nigerian ruminants: A 46-year meta-analysis (1970–2016) of their prevalence and distribution. Infectious Diseases of Poverty, 7(1), 52.

Kochanowski, M., Karamon, J., Dąbrowska, J., Dors, A., Czyżewska-Dors, E., & Cencek, T. (2017). Occurrence of intestinal parasites in pigs in Poland – the Influence of factors related to the production system. Journal of Veterinary Research, 61(4), 459–466.

Kotelnikov, G. A. (1984). Gel'mintologicheskiye issledovaniya zhivotnykh i okruzhayushchey sredy [Helminthological studies of animals and the environment]. Kolos, Moscov (in Russian).

Kovalenko, I. I., Sentyrin, V. V., & German, I. V. (1998). Udoskonaleni metody diahnostyky hel’mintoziv ta eymeriozu ptakhiv [Improved methods for diagnosis of helminthiasis and eumeriosis of birds]. Veterinary Medicine of Ukraine, 7, 30 (in Ukrainian).

Manyi-Loh, C. E., Mamphweli, S. N., Meyer, E. L., Makaka, G., Simon, M., & Okoh, A. I. (2016). An overview of the control of bacterial pathogens in cattle manure. International Journal of Environmental Research and Public Health, 13(9), 843.

Mohd Zain, S. N., Sahimin, N., Pal, P., & Lewis, J. W. (2013). Macroparasite communities in stray cat populations from urban cities in Peninsular Malaysia. Veterinary Parasitology, 196(3–4), 469–477.

Nansen, P. (1987). Production losses and control of helminths in ruminants of temperate regions. International Journal for Parasitology, 17(2), 425–433.

Ngui, R., Lim, Y. A. L., Traub, R., Mahmud, R., & Mistam, M. S. (2012). Epidemiological and genetic data supporting the transmission of Ancylostoma ceylanicum among human and domestic animals. PLoS Neglected Tropical Diseases, 6(2), e0001522.

Nissen, S., Poulsen, I. H., Nejsum, P., Olsen, A., Roepstorff, A., Rubaire-Akiiki, C., & Thamsborg, S. M. (2011). Prevalence of gastrointestinal nematodes in growing pigs in Kabale District in Uganda. Tropical Animal Health and Production, 43(3), 567–572.

Paliy, A. P., Stegniy, B. T., Muzyka, D. V., Gerilovych, A. P., & Korneykov, O. M. (2016). The study of the properties of the novel virucidal disinfectant. Agricultural Science and Practice, 3(3), 41–47.

Paliy, A. P., Sumakova, N. V., Paliy, A. P., & Ishchenko, K. V. (2018). Biological control of house fly. Ukrainian Journal of Ecology, 8(2), 230–234.

Paller, V. G. V., & de Chavez, E. R. C. (2014). Toxocara (Nematoda: Ascaridida) and other soil-transmitted helminth eggs contaminating soils in selected urban and rural areas in the Philippines. The Scientific World Journal, 2014, e386232.

Pautova, E. A., Kurepina, N. Y., & Dovgalev, A. S. (2012). Toksokaroz v Respublike Altay. Geoinformatsionnoye (GIS) kartograficheskoye modelirovaniye [Toksokaroz in the Republic of Altai. Geoinformation (GIS) cartographic modeling]. Medical Parasitology and Parasitic Diseases, 4, 11–14 (in Russian).

Piwak, V. P., Bulik, R. E., & Zaxarchuk, O. I. (2007). Laboratorna diahnostyka parazytarnykh invaziy [Laboratory diagnosis of parasitic infestations]. Chernivtsi Medical University, Chernivtsi (in Ukrainian).

Radionov, A. V. (2012). Struktura populyatsii osnovnykh vidov nematod u krupnogo rogatogo skota raznogo vozrasta v tsentral'noy zone Rossii [The structure of the population of the main nematode species in cattle of different ages in the central zone of Russia]. Russian Parasitological Journal, 2, 61–65 (in Russian).

Romanenko, N. A. (2000). Otsenka svyazi zabolevayemosti naseleniya parazitarnymi boleznyami s obsemenennost'yu okruzhayushchey sredy [Evaluation of the association of the incidence of parasitic diseases with the contamination of the environment]. Medical Parasitology, 2, 12–14 (in Russian).

Romanova, E. M., Indirakova, T. A., & Zonina, N. V. (2009). Mikrobnaya ekologiya zheludochno-kishechnogo trakta sobak pri toksokaroze sobak [Microbial ecology of the gastrointestinal tract of dogs with toxocarose dogs]. Izvestiya of the Samara Scientific Center of the Russian Academy of Sciences, 11(1/3), 167–168 (in Russian).

Salam, N., & Azam, S. (2017). Prevalence and distribution of soil-transmitted helminth infections in India. BMC Public Health, 17(1), 201.

Shalaby, H., Abdel-Shafy, S., & Derbala, A. (2010). The role of dogs in transmission of Ascaris lumbricoides for humans. Parasitology Research, 106(5), 1021–1026.

Silver, Z. A., Kaliappan, S. P., Samuel, P., Venugopal, S., Kang, G., Sarkar, R., & Ajjampur, S. S. R. (2018). Geographical distribution of soil transmitted helminths and the effects of community type in South Asia and South East Asia – A systematic review. PLoS Neglected Tropical Diseases, 12(1), e0006153.

Spanu, M., Fanti, A., Lodi, M. B., Casu, S., Desogus, F., Bisceglia, B., & Mazzarella, G. (2016). Microwaves disinfection of farmland. Journal of Electromagnetic Waves and Applications, 30(16), e1249802.

Steinbaum, L., Kwong, L. H., Ercumen, A., Negash, M. S., Lovely, A. J., Njenga, S. M., Boehm, A. B., Pickering, A. J., & Nelson, K. L. (2017). Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh. PLoS Neglected Tropical Diseases, 11(4), e0005522.

Subbotin, A. M., & Medvedskay, M. V. (2013). Gel'mintologicheskaya i sanitarnaya otsenka ob’yektov zhivotnovodstva zony Belorusskogo Poozer’ya [Helminthological and sanitary assessment of livestock facilities in the Belorussian Poozerie zone]. Bulletin of the Saratov State Agrarian University N. I. Vavilov, 3, 42–44 (in Russian).

Tamboura, H. H., Banga-Mboko, H., Maes, D., Youssao, I., Traore, A., Bayala, B., & Dembele, M. A. (2006). Prevalence of common gastrointestinal nematode parasites in scavenging pigs of different ages and sexes in Eastern Centre province, Burkina Faso. The Onderstepoort Journal of Veterinary Research, 73(1), 53–60.

Trach, V. N. (1992). Rekomendatsii po primeneniyu novogo metoda ucheta yaits gel'mintov i tsist prosteyshikh v fekaliyakh zhivotnykh [Recommendations on the application of the new method of recording eggs of helminths and cysts of protists in animal feces]. Kiev (in Russian).

Trejo, C. A., Romero Núñez, C., García Contreras Adel, C., & Mendoza Barrera, G. E. (2012). Soil contamination by Toxocara spp. eggs in a university in Mexico City. Brazilian Journal of Veterinary Parasitology, 21(3), 298–300.

Tun, S., Ithoi, I., Mahmud, R., Samsudin, N. I., Kek Heng, C., & Ling, L. Y. (2015). Detection of helminth eggs and identification of hookworm species in stray cats, dogs and soil from Klang Valley, Malaysia. PLoS One, 10(12), e0142231.

Van Dijk, J., & Morgan, E. R. (2011). The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology, 138(6), 780–788.

Winter, J., Rehbein, S., & Joachim, A. (2018). Transmission of helminths between species of ruminants in Austria appears more likely to occur than generally assumed. Frontiers in Veterinary Science, 5, 30.

Yadav, A. K., & Tandon, V. (1989). Nematode parasite infections of domestic pigs in a sub-tropical and high-rainfall area of India. Veterinary Parasitology, 31(2), 133–139.

Zarlenga, D. S., Hoberg, E., Rosenthal, B., Mattiucci, S., & Nascetti, G. (2014). Anthropogenics: Human influence on global and genetic homogenization of parasite populations. The Journal of Parasitology, 100(6), 756–772.


Most read articles by the same author(s)