Trophic-metabolic activity of earthworms (Lumbricidae) as a zoogenic factor of maintaining reclaimed soils’ resistance to copper contamination

  • Y. L. Kulbachko Oles Honchar Dnipropetrovsk National University
  • О. O. Didur Oles Honchar Dnipropetrovsk National University
  • O. Y. Pakhomov Oles Honchar Dnipropetrovsk National University
  • I. M. Loza Oles Honchar Dnipropetrovsk National University


Soil contamination by heavy metals, first of all, influences biological and ecological conditions, and it is able to change the conservative soil features, such as humus content, aggregation, acidity and others, leading to partial or total diminishing of soil fertility and decrease in soil economic value. Zoogenic issues of soil protective capacity formation in conditions of heavy metal content rise under technogenesis have been studied. The article discusses the features of earthworm trophic-metabolic activity in the afforested remediated site (Western Donbass, Ukraine) with different options of mixed soil bulk. Western Donbass is the large center of coal mining located in South-Western part of Ukraine. High rates of technical development in this region lead to surface subsidence, rising and outbreak of high-mineralized groundwater, and formation of dump pits of mine wastes. Remediated area is represented by the basement of mine wastes covered by 5 options of artificial mixed soil with different depth of horizons. The following tree species were planted on top of artificial soil: Acer platanoides L., Robinia pseudoacacia L., and Juniperus virginiana L. The main practical tasks were to define on the quantitative basis the buffer capacity of artificial mixed soil and earthworm excreta in relation to copper contamination and to compare its immobilization capacity in conditions of artificial forest plants in the territory of Western Donbass. It was proved that earthworm excreta had a great influence on soil immobilization capacity (particularly, on soil buffering to copper) which increased for excreta in the following range: humus-free loess loam – top humus layer of ordinary chernozem. Immobilization efficiency of copper by earthworm excreta from ordinary chernozem bulk compared with baseline (ordinary chernozem) was significantly higher. It should be noted that trophic-metabolic activity of earthworms plays very important role as a zoogenic factor which restricts movement of excess chemicals, maintains stability and increases resistance to soil contamination, in particular, with copper. Besides, it is possible to accelerate the artificial forest edaphotop naturalization on reclaimed land, and to increase its ecological value


Andersson, A., 1977. The distribution of heavy metals and soil material as influenced by the ionic radius. Swed. J. Agri. Res. 7(2), 79–83.

Arinushkina, E.V., 1970. Rukovodstvo po himicheskomu analizu pochv [Manual on soil chemical analysis]. MSU, Moscow (in Russian).

Bernard, M.J., Neatrour, M.A., McCay, T.S., 2009. Influence of soil buffering capacity on earthworm growth, survival, and community composition in the Western Adirondacks and Central New York. Northeast. Nat. 16(2), 269–284. >> doi.:10.1656/045.016.0208

Bottinelli, T., Henry-des-Tureaux, V., Hallaire, J., Mathieu, Y., Benard, T., Duc Tran, P., Jouquet, 2010. Earthworms accelerate soil porosity turnover under watering conditions. Geoderma 156(1–2), 43–47. >> doi.:10.1016/j.geoderma.2010.01.006

Branulou, A.H., 1984. Geohimiya [Geochemistry]. Nedra, Moskow (in Russian).

Brygadyrenko, V.V., 2006. Vozmozhnosti ispol'zovaniya napochvennyh bespozvonochnyh dlya indikacii gradaciy uvlazhneniya edafotopa v lesnyh ekosistemah [The possibility to use soil invertebrates to indicate soil moisture gradations in the forest ecosystems]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 14(1), 21–26 (in Russian).

Bulakhov, V.L., Emel'janov, I.G., Pakhomov, O.Y., 2003. Bioraznoobrazie kak funkcional'naja osnova jekosistem [Biodiversity as functional basis of ecosystems]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 11(1), 3–8.

Bulakhov, V.L., Pakhomov, O.Y., 2011. Funkcіonal'na zoologіya [Functional Zoology]. DNU, Dnіpropetrovsk (in Ukrainian).

Buskunova, G.G., Amineva, A.A., 2011. Soderzhanie medi i cinka v sisteme «pochva – rastenie» v usloviyah geohimicheskoy provincii yuzhnogo Urala (na primere Achillea nobilis L.) [Copper and zinc in the "soil – plant" system in conditions of geochemical province, southern Ural (e.g. Achillea nobilis L.)] Izvestiya Samarskogo Nauchnogo Centra Rossiyskoy Akademii Nauk 13(1), 31–35 (in Russian).

Butt, K.R., Lowe, C.N., 2011. Controlled cultivation of endogenic and anecic earthworms. Ed. A. Karaca. Soil Biology. Biology of Earthworms 24, 107–121. >> doi.:10.1007/978-3-642-14636-7_7

Cooke, J.A., Johnson, M.S., 2002. Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ. Rev. 10(1), 41–71. >> doi.:10.1139/a01-014

Didur, O., Loza, I., Kul’bachko, Y., Pakhomov, O., Kryuchkova, A., 2013. Environmental impact of earthworm (Lumbricidae) excretory activity on pH-buffering capacity of remediated soil. Visnyk of Lviv University. Series biological 62. 140–145.

Eisenhauer, N., 2010. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53(6), 343–352. >> doi.:10.1016/j.pedobi.2010.04.003

Fonte, S.J., Barrios, E., Six, J., 2010. Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agroecosystems of Honduras. Pedobiologia 53(5), 327–335. >> doi.:10.1016/j.pedobi.2010.03.002

Frank, R., 1976. Metals in agricultural soils of Ontario. Can. J. Soil. Sci. 56(3), 181–196. >> doi.:10.4141/cjss76-027

Gutiérrez-López, M., Jesús, J.B., Trigo, D., Fernández, R., Novo, M., Díaz-Cosín, D.J., 2010. Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties. Pedobiologia 53(6), 381–389. >> doi.:10.1016/j.pedobi.2010.07.003

Ilyin, V.B., 1995. Ocenka bufernosti pochv po otnosheniyu k tiazhelym metallam [Soil buffering evaluation with respect to heavy metals]. Agrohimiya 10, 109–113 (in Russian).

Jouquet, P., Blanchart, E., Capowiez, Y., 2014. Utilization of earthworms and termites for the restoration of ecosystem functioning. Appl. Soil Ecol. 73, 34–40. >> doi.:10.1016/j.apsoil.2013.08.004

Kozlovskaya, L.S., 1976. Rol' pochvennyh bespozvonochnyh v transformacii organicheskogo veshhestva bolotnyh pochv [Role of soil invertebrates in transformation of organic matter in marsh soils]. Nauka, Leningrad (in Russian).

Kul’bachko, Y., Didur, O., Loza, I., 2007. Ocenka vliyaniya predstaviteley dvuparnonogih mnogonozhek (Diplopoda) na emissiyu uglekislogo gaza model'nymi pochvosmesiami pri reshenii problem rekul'tivacii narushennyh zemel' [Impact assessment of centipedes millipedes (Diplopoda) effect on carbon dioxide emissions in the model of mixed soil to solve remediation problems]. Problems of Ecology and Nature Protection in Technogenic Region 7, 93–99 (in Russian).

Kul’bachko, Y., Loza, I., Pakhomov, O., Didur, O., 2011. The zoological remediation of technogen faulted soil in the industrial region of the Ukraine Steppe zone. Behnassi, M. et al. (eds.), Sustainable agricultural development. Springer Science + Business Media, Dordrecht, Heidelberg, London, New York. pp. 115–123.

Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.-P., 2006. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42(1), 3–15. >> doi.:10.1016/j.ejsobi.2006.10.002

Loranger-Merciris, G., Laossi, K.-R., Bernhard-Reversat, F., 2008. Soil aggregation in a laboratory experiment: Interactions between earthworms, woodlice and litter palatability. Pedobiologia 51(5–6), 439–443. >> doi.:10.1016/j.pedobi.2008.01.002

Metodicheskie ukazaniya po opredeleniyu tiazhelyh metallov v pochvah sel'hozugodiy i produkcii rastenievodstva [Manual for heavy metals determination in soils and crop production] 1992. CINAO, Moscow (in Russian).

Motuzova, G.V., Bezuglova, O.S., 2007. Ekologicheskiy monitoring pochv [Soil environmental monitoring]. Gaudeamus, Moskow (in Russian).

Orlov, D.S., 1994. Pochvenno-ekologicheskiy monitoring [Environmental and soil monitoring]. MGU, Moscow (in Russian).

Pakhomov, O., Kul’bachko, Y., Didur, O., Loza, I., 2009. Mining dump rehabilitation: The potential role of bigeminate-legged millipeds (Diplopoda) and artificial mixed-soil habitats. Optimization of disaster forecasting and prevention measures in the context of human and social dynamics. I. Apostol et al. (Eds.) NATO science for peace and security series. IOS Press, Amsterdam, Berlin, Tokyo, Washington. pp. 163–171.

Pampura, T.V., Pinskiy, D.L., Ostroumov, V.G., 1993. Eksperimental'noe izuchenie bufernosti chernozema pri zagriaznenii med'yu i cinkom [Experimental study of chernozem buffering at copper and zinc contamination]. Pochvovedenie 2, 104–110 (in Russian).

Pecharová, E., Martis, M., Kašparová, I., 2011. Environmental approach to methods of regeneration of disturbed landscapes. Journal of Landscape Studies 4(2), 71–80.

Pokarzhevskiy, А.D., 1985. Geohimicheskaya ekologiya nazemnyh zhivotnyh [Geochemical ecology of terrestrial animals]. Nauka, Moscow (in Russian).

Safonov, А.E., 2005. Fіtogeohіmіya mіdі u antropogenno transformovanomu seredovishhі [Phytogeochemistry of copper in anthropogenically transformed environment]. Problems of Ecology and Nature Protection in Technogenic Region 5, 68–74 (in Ukrainian).

Striganova, B.R., 1980. Pitanie pochvennyh saprofagov [Feeding of soil saprophages]. Nauka, Moscow (in Russian).

Truskavetskiy, R.S., 2003. Buferna zdatnіst' gruntіv ta yih osnovnі funkcіi [Soil buffer capacity and its main functions]. Nove Slovo, Kharkiv (in Ukrainian).

Tsvetkova, N.M., 1992. Osobennosti migracii organo-mineral'nyh veshhestv i mikroelementov v lesnyh biogeocenozah stepnoy Ukrainy [Features of organic and mineral substances and trace elements migration in the forest biogeocenoses in Steppe of Ukraine]. DNU, Dnipropetrovsk (in Russian).

Tsvetkova, N.M., Yakuba, M.S., 2007. Mіd' u lіsovih ekosistemah Prisamar’ya Dnіprovs'kogo [Copper in forest ecosystems of Prysamar'ye Dnieprovske]. Pitannia Stepovogo Lіsoznavstva ta Lіsovoy Rekultivacіi Zemel'. DNU, Dnіpropetrovsk. pp. 15–21 (in Ukrainian).

Van Emden, H.F., 2008. Statistics for terrified biologists. Blackwell, Oxford.

Zicsi, A., Szlavecz, K., Csuzdi, C., 2011. Leaf litter acceptance and cast deposition by peregrine and endemic European lumbricids (Oligochaeta: Lumbricidae). Pedobiologia 54, 145–152. >> doi.:10.1016/j.pedobi.2011.09.004

Zverkovskiy, V.N., 2002. Osobennosti razvitiya lesnyh nasazhdeniy v mnogoletnem eksperimente po rekul'tivacii otvala shahty “Pavlogradskaya” [Features of forest plantations development in the long-term experiment to dump reclamation of "Pavlogradskaya" mine]. Pitannia Stepovogo Lіsoznavstva ta Lіsovoy Rekultivacіi Zemel'. DNU, Dnіpropetrovsk. pp. 21–30 (in Russian).