Effect of mammals’ excretory function on aspartate aminotransferase activity in Glechoma hederacea leaves in conditions of Cd pollution

  • O. M. Vasilyuk Oles Honchar Dnipropetrovsk National University
  • O. Y. Pakhomov Oles Honchar Dnipropetrovsk National University
Keywords: water-soluble protein fraction, maximum allowable concentration, aspartate aminotransferase


The paper includes analysis of research of Cd impact on the activity of the enzyme of aspartate aminotransferase (AST) nitrogen metabolism and the content of water-soluble protein fraction (albumin) in Glechoma hederacea L. leaves, which dominated in the research area (in natural floodplain oak forest with Stellaria holostea L.). Cd was introduced in the form of salts of Cd(NO3)2 in the range of concentrations of: 0.25, 1.25, 2.5 g/m2, equivalent to the inclusion of Cd in 1, 5, 10 doses of MAC. Increase (P < 0.05) in the activity of AST 2.6–3.0 times (with adding Cd salts at a dose of 1 and 5 МAС) and albumin content by 37% (with adding Cd salts at a dose of 10 МAС) compared to control (the area without Cd pollution and excretory activity of mammals) was shown. Using of excreta of some representatives of mammals (for example, Capreolus capreolus L.) contributed to reduction of Cd toxic effects and restoring of the functional metabolic activity of AST by 23% (with Cd 1 МAС) and by 34% (Cd 5 МAС). It is the evidence of protective function of mammals and their normalization effect at the above concentrations of Cd. Whereas the adding of Cd salts at a dose of 10 МAС led to 3 times’ inhibition of AST activity, the toxic effect of metal by excretory function of mammals was not reduced. Observations revealed the albumin content normalization by 22% in the presence of Cd 1MAC respectively (with the introduction of C. capreolus excreta) and to the control level (the area without Cd pollution and excretory activity of mammals) with the excreta of Sus scrofa L. in the setting of Cd 10 MAC. It proves the need to use the different mammal species for integrated and comprehensive normalization of ecosystems under conditions of uncontrolled anthropogenic pollution.


Becerril, F.R., Juárez-Vázquez, L.V., Hernández-Cervantes, S.C., Acevedo-Sandoval, O.A., Vela-Correa, G., Cruz-Chávez, E., Moreno-Espíndola, I.P., Esquivel-Herrera, A., de León-González, F., 2013. Impacts of manganese mining activity on the environment interactions among soil, plants and arbuscular mycorrhiza. Arch. Environ. Contam. Toxicol. 64(2), 219–227. >> doi.:10.1007/s00244-012-9827-7

Bradford, M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. (72), 248–254. >> doi.:10.1016/0003-2697(76)90527-3

Bulakhov, V.L., Emel'janov, I.G., Pakhomov, O.Y., 2003. Bioraznoobrazie kak funkcional'naja osnova jekosistem [Biodiversity as functional basis of ecosystems]. Vìsn. Dnìpropetr. Unìv. Ser. Bìol. Ekol. 11(1), 3–8.

Dey, S.K., Dey, J., Patra, S., Pothal, D., 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz. J. Plant Physiol. 19(1), 53–60.

Douchiche, O., Driouich, A., Morvan, C., 2010. Spatial regulation of cell-wall structure in response to heavy metal stress: Cadmium-induced alteration of the methyl-etherification pattern of homogalacturonans. Ann. Bot. (Lond.) 105, 481–491. >> doi.:10.1093/aob/mcp306

Hameed, A., Mahmooduzzafar, T.N.Q., Siddiqi, T.O., Iqbal, M., 2011. Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz. J. Plant Physiol. 23(1), 46–54. >> doi.:10.1590/S1677-04202011000100007

Hasan, S.A., Hayat, S., Wani, A.S, Ahmad, A., 2011. Establishment of sensitive and resistant variety of tomato on the basis of photosynthesis and antioxidative enzymes in the presence of cobalt applied as shotgun approach. Braz. J. Plant Physiol. 23(3), 175–185.

Kopittke, P.M., Blamey, F.P.C., Menzies, N.W., 2008. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant Soil 303, 217–227. >> doi.:10.1007/s11104-007-9500-5

Kramer, U., 2010. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 61, 517–534. >> doi.:10.1146/annurev-arplant-042809-112156

Küpper, H., Götz., B., Mijovilovich, A., Küpper, F.C., Meyer-Klaucke, W., 2009. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol. 151, 702–714. >> doi.:10.1104/pp.109.139717

Lefcort, Н., Wehner, E.A., Cocco, P.L., 2013. Look inside get access pre-exposure to heavy metal pollution and the odor of predation decrease the ability of snails to avoid stressors. Arch. Environ. Contam. Toxicol. 64(2), 273–280. >> doi.:10.1007/s00244-012-9821-0

Malta, M.R., Furtinineto, A.E., Alves, J.D., Guimaraes, P.T.G., 2002. Effect of zinc application on tryptophan synthesis, total amino acids and total soluble proteins of leaves of coffee seedlings. Braz. J. Plant Physiol. 14(1), 31–37. >> doi.:10.1590/S1677-04202002000100004

Martí, E., Sierra, J., Cáliz, J., Montserrat, G., Vila, X., Garou, M.A., Cruañas, R., 2013. Ecotoxicity of Cr, Cd, and Pb on two mediterranean soils. Arch. Environ. Contam.Toxicol. 64(3), 377–387. >>doi.:10.1007/s00244-012-9841-9

Maruthi Sridhar, B.B., Han, F.X., Diehl, S.V., Monts, D.L., Su, Y., 2007. Effects of Zn and Cd accumulation on structural and physiological characteristics of barley plants. Braz. J. Plant Physiol. 19(1), 15–22. >> doi.:10.1590/S1677-04202007000100002

Mendoza-Cózatl, D.G., Jobe, T.O., Hauser, F., Schroeder, J.I., 2011. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr. Opin. Plant Biol. 14(5), 554–562. >> doi.:10.1016/j.pbi.2011.07.004

Mesjasz-Przybyłowicz, J., Barnabas, A., Przybyłowicz, W., 2007. Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293, 61–78. >> doi.:10.1007/s11104-007-9237-1

Mijovilovich, A., Leitenmaier, B., Meyer-Klaucke, W., Kroneck, P.M.H., Götz, B., Küpper, H., 2009. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol. 151, 715–731. >> doi.:10.1104/pp.109.144675

Millaleo, R., Reyes-Díaz, M., Alberdi, M., Ivanov, A.G., Krol, M., Hüner, N.P.A., 2013. Excess manganese differentially inhibits photo system I versus II in Arabidopsis thaliana L. J. Exp. Bot. 64(91), 343–354. >> doi.:10.1093/jxb/ers339

Musienko, M.M., Zhuk, I.V., 2009. Molekulyarni mehanizmi induktsiyi zahisnih reaktsiy roslin v umovah posuhi [Molecular mechanisms of induction of defense reactions of plants in drought conditions]. Ukr. Bot. J. 66(4), 580–595 (in Ukrainian).

Pakhomov, O.E., Vasilyuk, O.M., 2011. Activity of transamination enzyme as the indicater of biological revegetation of soils Mammalia in transformed ecosystems. The abstracts NATO advanced research workshop (ARW): Environmental security for South-East Europe and Ukraine. NATO Science Series book, Dnipropetrovsk. pp. 74–75.

Pandey, N., Pathak, G.C., Pandey, D.K., Pandey, R., 2009. Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Braz. J. Plant Physiol. 21(2), 103–111. >> doi.:10.1590/S1677-04202009000200003

Polevoy, V., Maximov, G. (eds.), 1978. Metody biohimicheskogo analiza rastenij [Methods of analysis biochemically of plants]. Leningrad University Press, Leningrad (in Russian).

Roussel, H., Waterlot, C.A., Pelfrêne, A., Pruvot, C., Mazzuca, M., Douay, F., 2010. Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch. Environ. Contam. Toxicol. 58(4), 945–954. >> doi.:10.1007/s00244-009-9425-5

Ruscitti, M., Arango, M., Ronco, M., Beltrano, J., 2011. Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Braz. J. Plant Physiol. 23(1), 15–25. >> doi.:10.1590/S1677-04202011000100004

Song, W.Y., Park, J., Mendoza-Cózatl, D.G., Suter-Grotemeyer, M., Shim, D., Hörtensteiner, S., Geisler, M., Weder, B., Rea, P.A., Rentsch, D., Schroeder, J.I., Lee, Y., Martinoia, E., 2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl. Acad. Sci. USA. 107, 21187–21192. >> doi.:10.1073/pnas.1013964107

Takamatsu, T., Murata, T., Koshikawa, M., Watanabe, M., 2010. Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions. Arch. Environ. Contam. Toxicol. 59(1), 91–99. >> doi.:10.1007/s00244-009-9449-x

Vasilyuk, O.M., Pakhomov, A.E., 2014. Еffect of lead ions on alanine aminotransferase activity in Glechoma hederacea leaves subject. Scientific enquiry in the contemporary world: Theoretical basics and innovative approach. Ser. Natural sciences. Ed. 2d. Research articles. B&M Publishing San Francisco, California, USA, B&M Publishing Research and Publishing Center “Colloquium”. 1, 19–26.

Vasilyuk, O.M., Pakhomov, O.E., 2012. Vplyvi ioniv nikelju na funkcional'nu aktyvnist' transaminaz v lystkah Glechoma hederatia L. v umovah ryjnoi' aktyvnosti Mammalia [Effect of nickel ions on the functional activity of enzymes in the leaves of Glechoma hederatia L. in digging activity of Mammalia]. Achievement of High school – 2012: Materialy VIІI Mezhdunarodnoj Nauchno-Prakticheskoj Konferencii. Bjal GRAD-BG, Sofija, Bolgarija, 21, 43–49 (in Ukrainian).

Vestena, S., Cambraia, J., Ribeiro, C., Oliveira, J.A., Oliva, M.A., 2011. Cadmium induced oxidative stress and antioxidative enzyme response in water hyacinth and salvinia. Braz. J. Plant Physiol. 23(2), 131–139. >> doi.:10.1590/S1677-04202011000200005

Viegas, R.A., Silveira, J.A.G., 2002. Activation of nitrate reductase of cashew leaf by exogenous nitrite. Braz. J. Plant Physiol. 14(1), 39–44. >> doi.:10.1590/S1677-04202002000100005