Seasonal dynamics of antioxidative processes in Acer negundo leaves under pollutant action


  • N. A. Khromykh Oles Honchar Dnipropetrovsk National University
  • V. S. Bilchuk Oles Honchar Dnipropetrovsk National University
  • G. S. Rossykhina-Galycha Oles Honchar Dnipropetrovsk National University
  • O. M. Vinnychenko Oles Honchar Dnipropetrovsk National University
Keywords: Acer negundo, superoxide dismutase, catalase, peroxidase, glutathione peroxidase, glutathione-S-transferase

Abstract

Activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (САТ, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione peroxidase (GPX, EC 1.11.1.9) and glutathione-S-transferase (GST, EС 2.5.1.18) were measured by spectrophotometrical method in Acer negundo leaves collected during May–August in DNU Botanical garden (control) and in Dnipropetrovsk polluted ecocenoses (plots 1, 2 and 3) in order to reveal the conformities of seasonal dynamics changes of antioxidative processes under pollutant action. The seasonal dynamics of SOD activity altered significantly under chronic pollutant action especially in leaves from plots contaminated by Lorries exhaust fumes and industrial emissions (r = 0.45, r = 0.08 and r = 0.25, accordingly, on plots 1, 2 and 3). The dynamics of CAT activity because of car exhaust fumes influence was similar to control (r = 0.92), whereas it changed more considerably under influence of two other types of contamination (r = 0.80). POD activity seasonal dynamics altered insignificantly in all polluted plots, and it may indicate the predomination of catalase pathway of hydrogen peroxide detoxification in Acer negundo leaves against the background of pollutant action. Furthermore, the increasing of correlative coefficients of seasonal dynamics of CAT and POD activity (from r = –0.18 on control to r = 0.28, r = 0.64 and r = 0.73, accordingly, on plots 1, 2 and 3) may indicate more coordinative functioning of catalase and peroxidase metabolic pathways as adaptive sign of trees from polluted urbocenoses. The seasonal dynamics of GPX activity in tree leaves sgarply varied from control subject to all contaminated plots (r = 0.04, r = –0.97 and r = –0.78), and it was followed by enhancing positive correlative links between dynamics of GPX and SOD activities (from r = –0.60 on control to r = 0.51, r = 0.70 and r = 0.93 on polluted plots). The dynamics of GST activity in A. negundo leaves did not change under pollutants action, instead of this correlative analysis revealed the intensification of negative links of GST dynamics with SOD (from r = 0.03 on control to r = –0.85, r =–0.98 and r =–0.93 on plots 1, 2 and 3) and GPX dynamics (from r = 0.25 on control to r = –0.88, r = –0.56 and r = –0.80 on plots 1, 2 and 3). The established conformities indicate the coordination of antioxidative processes in A. negundo leaves against the background of combined chronic pollutant action and may be considered as the index of A. negundo species metabolic resistance to anthropogenic pollution of urban cenoses. 

References

Bezsonova, V.P., 2001. Metody phytoindykatsiy v otsincy ekologichnogo stanu dovkillya [Methods of phytoindication for evaluation of environmental ecological state]. Zaporizhya University Press, Zaporizhya (in Ukrainian).
Bobyliov, Y.P., Brygadyrenko, V.V., Bulakhov, V.L., Gaichen-ko, V.A., Gasso, V.Y., Didukh, Y.P., Ivashov, A.V., Kucheriavyi, V.P., Maliovanyi, M.S., Mytsyk, L.P., Pakhomov, O.Y., Tsaryk, I.V., Shabanov, D.A., 2014. Ecology. Folio, Kharkiv (in Ukrainian).
Chang, C.C.C., Slesak, I., Jorda, L., Sotnikov, A., Melzer, M., Miszalski, Z., Mullineaux, P.M., Parker, J.E., Karpinska, B., Karpinski, S., 2009. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 150, 670–683.
http://dx.doi.org/10.1104/pp.109.135566
Chirkova, T.V., 2002. Phiziologicheskye osnovy ustoychivosty rasteniy [Physiological basis of plant resistance]. St.-Petersburg Univ. Press, St.-Petersburg (in Russian).
Deniz, M., Duzenli, S., 2007. The effect of refinery pollution on non-enzymatic foliar defense mechanisms in four evergreen plants species in Turkey. Acta Physiol. Plant. 29, 71–79.
http://dx.doi.org/10.1007/s11738-006-0011-4
Dixon, D.P., Skipsey, M., Edwards, R., 2010. Molecules of interest. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4), 338–350.
http://dx.doi.org/10.1016/j.phytochem.2009.12.012
Edwards, R., Dixon, D.P., Walbot, V., 2000. Plant glutathione Stransferases: Enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5(5), 193–198.
http://dx.doi.org/10.1016/S1360-1385(00)01601-0
Faltin, Z., Holland, D., Velcheva, M., Tsapovetsky, M., Roeckel-Drevet, P., Handa, A.K., Abu-Abied, M., Friedman-Einat, M., Eshdat, Y., Perl, A., 2010. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation. Plant Cell Physiol. 51(7), 1151–1162.
http://dx.doi.org/10.1093/pcp/pcq082
Garifzyanov, A.P., Ivanyschev, V.V., 2011. Physiologicheskye reaktsiy Acer platanoides L. na stress, vyzvannyi zagryazneniem sredy tyazhelymy metallamy [Physiological reactions of Acer platanoides L. to stress caused by heavy metals contamination of environment]. Fundamental Investigation 9, 331–334 (in Russian).
Geraskin, S., Evseeva, T., Oudalova, A., 2011. Plants as a tool for the environmental health assessment. Encyclopedia of Environmental Health. Elsevier Science. Vol. 1, 571–579.
http://dx.doi.org/10.1016/B978-0-444-52272-6.00612-7
Gill, S.S., Tuteja, N., 2010. Reactive oxygen species and antioxidant machinery abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930.
http://dx.doi.org/10.1016/j.plaphy.2010.08.016
Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S-transferase. The first step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.
Kardel, F., Wuyts, K., Babanezhad, M., Wuytack, T., Adriaenssens, S., Samson, R., 2012. Tree leaf wettability as passive bioindicator of urban habitat quality. Environ Exp Botan. 75(1), 277–285.
http://dx.doi.org/10.1016/j.envexpbot.2011.07.011
Khromykh, N., Rossikhina, G., 2011. Sezonna dinamika aktivnosti zakhysnykh fermentiv u lystkakh Robinia pseudoacacia za umov urbocenosiv [The seasonal dynamic of protective enzymes activity in Robinia pseudoacacia leaves under urbocenoses conditions]. Pitannya Bioindicatsii ta Ecologyi 16(1), 87–93 (in Ukrainian).
Kolupaev, Y.E., Karpets, Y.V., 2010. Formirovanie adaptivnykh reaktsiy rasteniy na deystvie abioticheskikh stressorov [Formation of plants adaptive reactions to abiotic stressors influence]. Osnova, Kyiv (in Russian).
Korshikov, I.I., Kotov, V.S., Mikheenko, I.P., Ignatenko, A.A., Chernyshova, L.V., 1995. Vzaimodeistvie rasteniy s tekhnogenno zagryaznennoy sredoy [Plants interaction with contaminated environment]. Naukova Dumka, Kiev (in Russian).
Kulagin, A.A., 2002. Ekologo-phyziologicheskie osobennosty topolya balzamicheskogo (Populus balsamifera L.) v usloviyakh zagryazneniya okruzhayuschey sredy metallamy [Ecology-physiological peculiarities of Populus balsamifera L. under metals contamination of environmet]. Dissertation Essay, Toliyatty (in Russian).
Matyssek, R., Wieser, G., Calfapietra, C., Vries, W., Dizengremel, P., Ernst, D., Jolivet, Y., Mikkelsen, T.N., Mohren, G.M.J., Thies, D., Tuovinen, J.-P., Weatherall, A., Paoletti, E., 2012. Forest under climate change and air pollution: Gaps in understanding and future direction for research. Environ. Pollut. 160(1), 57–65.
http://dx.doi.org/10.1016/j.envpol.2011.07.007
Mika, A., Minibayeva, F., Beckett, R., Luthje, S., 2004. Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem. Rev. 3(1–2), 173–193.
http://dx.doi.org/10.1023/B:PHYT.0000047806.21626.49
Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasava, M., Rey, P., Knaff, D.B., Issakidis, E., Jacquot, J.-P., Rouhier, N., 2006. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol. 142, 1364–1379.
http://dx.doi.org/10.1104/pp.106.089458
Nehnevajova, E., Lyubenova, L., Herzig, R., Schroder, P., Schwitzguebel, J.-P., Schmulling, T., 2012. Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal-contaminated soil. Environ. Exp. Bot. 76(2), 39–48.
http://dx.doi.org/10.1016/j.envexpbot.2011.10.005
Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H., 2002. Interaction between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53(372), 1283–1304.
http://dx.doi.org/10.1093/jexbot/53.372.1283
Polle, A., 2000. Defence against photooxidative damage in plants. In: Oxidative stress and the molecular biology of antioxidant defence / Ed. Scandallious. Cold Spring Harbour Lab. Press, 623–666.
Polovnikova, M.G., Voskresenskaya, O.L., 2008. Aktivnost komponentov antioksidantnoy zaschity i polifenoloksidazy u gazonnykh rasteniy v ontogeneze v usloviyakh gorodskoy sredy [Activity of antioxidative defense components and polyphenoloxidase of lawn plants during ontogenesis under urban conditions]. Physiology of Plants 55(5), 777–785 (in Russian).
Ramel, F., Sulmon, C., Serra, A.A., Gouesbet, G., Couee, I., 2012. Xenobiotic sensing and signaling in higher plants. J. Exp. Bot. 63(11), 3999–4014.
http://dx.doi.org/10.1093/jxb/ers102
Shupranova, L.V., Bilchuk, V.S., Boguslavska, L.V., Rossykhina, G.S., Vinnychenko, O.M., 2011. Suchasni metody biochimichnogo analizu roslyn [Modern methods of plants biochemical analysis]. Dnipropetrovsk University Press, Dnipropetrovsk (in Ukrainian).
Sluchyk, I., 2005. An estimation of the urban system’s mutagenic background using Populus berolinensis Dipp. Visnik of L’viv Univ. Biology series 39, 66–70 (in English).
Wierzbicka, M., Obidzinska, J., 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137, 155–171.
http://dx.doi.org/10.1016/S0168-9452(98)00138-1
Yadav, S.K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 76(2), 167–179.
http://dx.doi.org/10.1016/j.sajb.2009.10.007
Zang, C., Gallie, D.R., 2005. Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol. 138(3), 1673–1689. >> DOI: 10.1104/pp.105.062000
Zeiger, E., 2006. The effect of air pollution on plants. Plant Physiology. Fifth Edition. Essay 26.1. Online.
Zhang, G., Tanakamaru, K., Abe, J., Morita, S., 2007. Influence of waterlogging on some antioxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta Physiol. Plant. 29, 171–176.
http://dx.doi.org/10.1007/s11738-006-0022-1
Published
2014-04-29
Section
Articles

Most read articles by the same author(s)

1 2 > >>