Reduction of sulfur and oxidized forms of nitrogen by bacteria of Desulfuromonas sp., isolated from Yavorivske Lake, under the influence of ferrum citrate

Keywords: sulfur reducing bacteria; electron acceptors; ferrum; sulfur; nitrates; nitrites.


Technogenic reservoirs mainly contain several possible electron acceptors of anaerobic respiration, many of which are dangerous to the environment. The succession of their reduction (and thus detoxification) by sulfur reducing bacteria is not yet sufficiently studied. We investigated the influence of ferrum (III) citrate, present in the cultivation medium, on the reduction of sulfur, nitrate and nitrite ions by sulfur reducing bacteria Desulfuromonas acetoxidans IMV B-7384, Desulfuromonas sp. Yavor-5 and Desulfuromonas sp. Yavor-7, isolated from Yavorivske Lake. It was established that ferrum (III) citrate inhibits the biomass accumulation and hydrogen sulfide production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47 mM S0 and 1.74–10.41 mM ferrum (III) citrate, as compared with growth and hydrogen sulfide production by bacteria in the medium with only sulfur. In the medium with the same initial content (3.47 mM) S0 and ferrum (III) citrate bacteria produced ferrum (II) ions at concentrations 3.5–3.9 times higher than that of hydrogen sulfide. Ferrum (III) citrate inhibits the biomass accumulation, the nitrate or nitrite ions reduction and the ammonium ions production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47 mM NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate. In the medium with the same initial content (3.47 mM) NaNO3 and ferrum (III) citrate, bacteria produced ammonium ions at concentrations in 1.1 times higher than that of ferrum (II) ions. In the medium with the same initial content (3.47 mM) NaNO2 and ferrum (III) citrate, bacteria reduced 1.5–1.6 times more ferrum (III) than nitrite ions with production of ferrum (II) ions at concentrations 1.7 times higher than that of ammonium ions. The process of nitrate reduction carried out by bacteria of Desulfuromonas genus was less sensitive to the negative influence of ferrum (III) citrate, compared to the process of nitrite ions reduction. When the reduction of nitrate ions by bacteria in the presence of 1.74–10.41 mM ferrum (III) citrate decreased by 1.4–2.2 times, then the reduction of nitrite ions decreased by 1.8–3.2 times compared to their reduction in media with only NaNO3 or NaNO2, respectively. Although the reduction of ferrum (III) by cells in media with 3.47 mM S0, NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate decreased by 1.6–2.7, 1.6–2.7 and 1.1–2.2 times, respectively, compared to the reduction in medium with only ferrum (III) citrate, the investigated strains of bacteria were resistant to high concentrations of trivalent ferrum compounds and can therefore can be used in technologies of complex purification of environments polluted by heavy metal and nitrogen compounds.


An, T. T., & Picarda, F. W. (2015). Desulfuromonas carbonis sp. nov., an Fe (III)-, S0 and Mn (IV)-reducing bacterium isolated from an active coalbed methane gas well. International Journal of Systematic and Evolutionary Microbiology, 65(5), 1686–1693.

Baran, I. M., Podopryhora, O. I., Gryshchuk, G. V., Bondar, L. S., Kit, L. Y., Klym, I. R., Нnatush, S. O., & Gudz, S. P. (2003). Ekolohichnyy monitorynh vodoym Yavorivs’koho sirkovoho rodovyshcha; mikrobiolohichnyy kontrol’ [The ecological monitoring of Yavoriv sulfur deposit reservoirs; microbiological control]. Environment and Health, 27(4), 56–62 (in Ukrainian).

Bilyy, O. I., Vasyliv, O. M., & Hnatush, S. O. (2014). The anode biocatalyst with simultaneous transition metals pollution control. In: Technology and application of microbial fuel cells. InTech, Rijeka.

Bokranz, M. J., Katz, J., Schröder, I., Roberton, A. M., & Kröger, A. (1983). Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Archives of Microbiology, 135, 36–41.

Breuer, M., Rosso, K. M., Blumberger, J., & Butt, J. N. (2015). Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. Journal of the Royal Society Interface, 12(102), 1117.

Chayka, O. M., & Peretyatko, T. B. (2018). The reduction of hexavalent chromium and nitrates by Desulfuromonas sp. YSDS-3, isolated from the soil of Yasiv sulfur mine. Ecology and Noospherology, 29(2), 76–82.

Fitzgerald, L. A., Petersen, E. R., Leary, D. H., Nadeau, L. J., Soto, C. M., Ray, R. I., Little, B. J., Ringeisen, B. R., Johnson, G. R., Vora, G. J., & Biffinger, J. C. (2013). Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output. Biosensors and Bioelectronics, 40(1), 102–109.

Gaidin, A. M., & Zozulia, I. I. (2009). Novi ozera Lvivshchyny [New lakes of Lviv region]. Afisha, Lviv (in Ukrainian).

Gebhardt, N. A.,Thauer, R. K., Linder, D., Kaulfers, P.-M., & Pfennig, N. (1985). Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Archives of Microbiology, 141, 392–398.

Gescher, J., & Kappler, A. (2012). Microbial metal respiration: From geochemistry to potential applications. Springer-Verlag, Heidelberg.

Govorukha, V. M., Havrylyuk, O. A., & Tashyrev, O. B. (2015). Regularities of quantitative distribution for Fe(III)-reducing bacteria in natural ecosystems. Biotechnologia Acta, 8(3), 123–128.

Granger, D. L., Taintor, R. R., Boockvar, K. S., & Hibbs, J. B. (1996). Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymology, 268, 142–151.

Gudz, S. P., Нnatush, S. O., Moroz, O. M., Peretiatko, T. B., & Vasyliv, O. M. (2013). Svidotstvo pro deponuvannya shtamu bakteriy Desulfuromonas acetoxidans Ya-2006 u Depozytariyi Instytutu mikrobiolohiyi i virusolohiyi im. D. K. Zabolotnoho NAN Ukrayiny z nadannyam reyestratsiynoho nomeru IMV B-7384 [Certificate of deposition of bacteria Desulfuromonas acetoxidans Ya-2006 strain at the Depository of D. K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine with appropriation of registration number IMV B-7384] (in Ukrainian).

Gudz, S. P., Нnatush, S. O., Yavorska, G. V., Bilinska, I. S., & Borsukevych, B. M. (2014). Praktykum z mikrobiologii’ [Workshop on microbiology]. Ivan Franko National University of Lviv, Lviv (in Ukrainian).

Gudz, S., Нnatush, S., Peretiatko, T., Palianytsia, B., Kostruba, M., Podopryhora, O., & Klym, I. (2004). Dynamika zmin tytru sul’fatvidnovlyuval’nykh bakteriy ta vmistu sul’fativ i sirkovodnyu u vodakh kar’yeru Yavorivs’koho sirkovoho rodovyshcha v protsesi yoho zatoplennya [Dynamics of changes in the titres of sulfate reducing bacteria and the content of sulfates and hydrogen sulfide in the waters of the Yavoriv sulfur deposit in the course of its flooding]. Visnyk of Lviv University, Biological Series, 37, 185–189 (in Ukrainian).

Hedderich, R., Klimmek, O., Kroger, A., Dirmeier, R., Keller, M., & Stetter, K. O. (1999). Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiology Reviews, 22(5), 353–381.

Hnatush, S., & Maslovska, O. (2018). Sulfur-reducing bacteria Desulfuromonas acetoxidans ІМV В-7384 under the influence of heavy metal ions. The Development of Natural Sciences. Izdevnieciba Baltija Publishing, Riga.

Kozlova, I. P., Radchenko, O. S., Stepura, L. H., Kondratyuk, T. O., & Pilyashenko-Novokhatnyy, A. I. (2008). Heokhimichna diyalnist mikroorhanizmiv ta yiyi prykladni aspekty [Geochemical activity of microorganisms and its applied aspects]. Naukova Dumka, Kyiv (in Ukrainian).

Kuever, J., Rainey, F. A., & Widdel, F. (2005). Family I. Desulfuromonaceae fam. nov. Genus I. Desulfuromonas / Desulfuromonas genus. Pfennig and Biebl, 1977. In: Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (Eds.). Bergey’s manual of systematic bacteriology. 2, Springer, New York.

Kuznetsov, A., Gradova, N., Lushnikov, S., Éngelkhart, M., Vaysser, T., & Chebotareva, M. (2015). Prikladnaya ehkobiotekhnologiya [Applied Ecobiotechnology]. Binom Laboratoriya Znanij, Moscow (in Russian).

Lemos, R. S., Fernandes, A. S., Pereira, M. M., Gomes, C. M., & Teixeira, M. (2002). Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: Phylogenetic relationships, metal centres and membrane attachment. Biochimica et Biophysica Acta – Bioenergetics, 1553, 158–170.

Lengeler, J., Drevs, G., & Shlegel, G. (Eds.). (2005). Sovremennaya mikrobiologiya. Prokarioty [Contemporary Microbiology. Prokaryotes]. Mir, Moscow (in Russian).

Maslovska, O. D., & Hnatush, S. O. (2013). Vplyv ferum (III) cytratu na ATF-gidrolazy Desulfuromonas acetoxidans IMV B-7384 [The influence of ferric (III) citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 21(1), 3–8 (in Ukrainian).

Maslovska, O., & Hnatush, S. (2015). Oxidative modification of proteins and specific superoxide dismuase activity of Desulfuromonas acetoxidans ІМV В-7384 bacteria under the influence of ferric citrate. Microbiology and Biotechnology, 30, 34–40.

Maslovska, O., Hnatush, S., & Halushka, A. (2014). Zminy zhyrnokyslotnogo skladu klityn Desulfuromonas acetoxidans IMV B-7384 za vplyvu ferum cytratu [Fatty acids composition of Desulfuromonas acetoxidans ІМV В-7384 cells under the influence of ferric citrate]. Studia Biologica, 8(3–4), 87–98 (in Ukrainian).

Maslovska, O., Hnatush, S., & Katernyak, S. (2015). The activity of enzymes of glutathione antioxidant system of Desulfuromonas acetoxidans ІМV B-7384 under the influence of ferric (III) citrate. Visnyk of Lviv University, Biological Series, 70, 213–220.

Moroz, O. M., Hnatush, S. O., Bohoslavets, C. I., Yavorska, G. V., & Truchym, N. V. (2016). Vykorystannya bakteriyamy Desulfuromonas sp. yoniv ferumu (III) i manhanu (IV) yak aktseptoriv elektroniv [Usage of ferrum (ІІІ) and manganese (IV) ions as electron acceptors by bacteria of Desulfuromonas sp.]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 87–95 (in Ukrainian).

Moroz, O. M., Kolisnyk, Y. I., Podopryhora, O. I., Klym, I. R., Gudz, S. P., Borsukevych, B. M., & Hnatush, S. O. (2008). Mikroflora vody ozera “Yavorivsʹke” [Microflora of “Javorivske” Lake water]. Scientific Bulletin of the Uzhgorod University, Series Biology, 24, 131–138 (in Ukrainian).

Moroz, O. M., Peretiatko, T. B., Klym, I. R., Borsukevych, B. M., Yavorska, G. V., & Kulachkovsky, O. R. (2013). Sirkovidnovlyuval’ni bakteriyi ozera Yavorivs’ke: Deyaki morfolohichni, kul’tural’ni i fiziolohichni osoblyvosti [Sulfur reducing bacteria from Yavorivske Lake: Some morphological, cultural and physiological peculiarities]. Scientific Bulletin of the Uzhgorod University, Series Biology, 35, 34–41 (in Ukrainian).

Moroz, O., Gul’, N., Galushka, A., Zvir, G., & Borsukevych, B. (2014). Vykorystannja riznyh akceptoriv elektroniv bakterijamy Desulfuromonas sp., vydilenymy z ozera Javorivs’ke [Different electron acceptors usage by bacteria of Desulfuromonas sp. isolated from Yavorivske Lake]. Visnyk of Lviv University, Biological Series, 65, 322–334 (in Ukrainian).

Morozkina, E. V., & Zvyagilskaya, R. A. (2007). Nitrate reductases: Structure, functions, and effect of stress factors. Biochemistry, 72(10), 1151–1161.

Prokhorova, A., Sturm-Richter, K., Doetsch, A., & Gescher, J. (2017). Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Applied Environmental Microbiology, 83(6), e03033–e03016.

Richter, K., Schicklberger, M., & Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied Environmental Microbiology, 78(4), 913–921.

Roden, E. E., & Lovley, D. R. (1993). Dissimilatory Fe (III) reduction by the marine microorganism Desulfuromonas acetoxidans. Applied Environmental Microbiology, 59(3), 734–742.

Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., & Thompson, F. (Eds.). (2014). The procaryotes. Prokaryotic physiology and biochemistry. Springer-Verlag, Heidelberg.

Simonte, F., Sturm, G., Gescher, J., & Sturm-Richter, K. (2017). Extracellular electron transfer and biosensors. In: Advances in biochemical engineering / biotechnology. Springer, Berlin.

Sung, Y., Ritalahti, K. M., Sanford, R. A., Urbance, J. W., Flynn, S. J., Tiedje, J. M., & Löffler, F. E. (2003). Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Applied Environmental Microbiology, 69(5), 2964–2974.

Tarabas, O., Moroz, O., Hnatush, S., Yavorska, G., Zvir, G., & Kovalchuk, M. (2017). Ekoloho-trofichni hrupy mikroorhanizmiv vody ozera Yavorivs’ke [Ecological trophic groups of microorganisms of water of Yavorivske lake ]. Visnyk of Lviv University, Biological Series, 76, 166–178 (in Ukrainian).

Teng, Y., Xu, Y., Wang, X., & Christie, P. (2019). Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Frontiers in Microbiology, 10(106), 1–14.

Vasyliv, O. M. Maslovska, О. D., Hnatush, S. O., Bilyy, O. I., & Ferensovych, Y. P. (2016). Electric current generation by Desulfuromonas acetoxidans IMV B-7384 while application of ferric citrate, fuchsine and methylene blue. Microbiology and Biotechnology, 36, 42–49.

Vasyliv, O. М., Maslovska, O. D., Ferensovych, Y. P., Bilyу, O. І., & Hnatush, S. O. (2015). Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by Desulfuromonas acetoxidans ІМV В-7384. Proceedings of SPIE, 9493, 94930J–1–7.

Vasyliv, O., Bilyy, O., Hnatush, S., Kushkevych, I., & Getman, V. (2011). The changes of spectroscopic characteristics of sulfur reducing bacteria Desulfuromonas acetoxidans under the influence of different metal ions. Proceedings of SPIE, 8152, 81520B–1–7.

Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38(4), 633–659.