Sulfidogenic activity of sulfate and sulfur reducing bacteria under the influence of metal compounds
Abstract
Due to their high content in natural environments, heavy metals exhibit toxic effects on living organisms, which leads to a decrease in the biological diversity and productivity of ecosystems. In niches with low oxidation reducing potential, sulfate and sulfur reducing bacteria carry out the reducing transformation of oxidized sulfur compounds with the formation of significant amounts of hydrogen sulfide. H2S produced by bacteria interacts with metal ions, precipitating them in the form of sulfides. The aim of this work was to investigate the influence of lead, cuprum (II), iron (II) and manganese (II) salts on the production of hydrogen sulfide by bacteria of the Desulfovibrio and Desulfuromonas genera, isolated from Yavorivske Lake, and to evaluate the efficiency of their use for purifying media, enriched with organic compounds, from hydrogen sulfide and heavy metals. The content of heavy metal ions in the water of Yavorivske Lake was determined by the spectrophotometric method. The bacteria were grown for 10 days at 30 °C in the Kravtsov-Sorokin medium under anaerobic conditions. To study the influence of metal ions on bacteria growth and their H2S production, cells were incubated with metal salts (0.5–4.0 mM), washed and grown in media with SO42– or S0. To determine the level of metal ions binding by H2S, produced by bacteria, cells were grown in media with metal compounds (0.5–4.0 mM), SO42– or S0. Biomass was determined by turbidimetric method. In the cultural liquid the content of H2S was determined quantitatively by spectrophotometric method, and qualitatively by the presence of metal cations. The content of metal sulfides in the growth medium was determined by weight method. Sulfate and sulfur-reducing bacteria were resistant to 2.0 mM Pb(NO3)2, 2.5 mM CuCl2, 2.5 mM FeCl2 × 4H2O and 2.0 mM MnCl2 × 4H2O, therefore they are promising for the development of biotechnologies for the purification of water resources contaminated by sulfur and metal compounds. When present in a medium with sulfates or sulfur of 1.0–1.5 mM lead, cuprum (II), iron (II) or manganese (II) ions, they almost completely bind with the H2S produced by bacteria in the form of insoluble sulfides, which confirms the negative results of qualitative reactions to their presence in the cultural liquid.References
Baran, I. M., Podopryhora, O. I., Gryshchuk, G. V., Bondar, L. S., Kit, L. Y., Klym, I. R., Нnatush, S. O., & Gudz, S. P. (2003). Ekolohichnyy monitorynh vodoym Yavorivs'koho sirkovoho rodovyshcha; mikrobiolohichnyy kontrol' [The ecological monitoring of Yavoriv sulfur deposit reservoirs; microbiological control]. Environment and Health, 27(4), 56–62 (in Ukrainian).
Eger, P. (1994). Wetland treatment for trace metal removal from mine drainage: The importance of aerobic and anaerobic processes. Water Science and Technology, 29(1), 249−256.
Frank, Y. A., & Lushnikov, S. V. (2006). Biotekhnologicheskij potencial sul'fatreduciruyushchih bakterіj [Biotechnological potential of sulfate reducing bacteria]. Ehkologiya i Promyshlennost', 1, 10–13 (in Russian).
Gaidin, A. M., & Zozulia, I. I. (2009). Novi ozera L'vivshchyny [New lakes of Lviv region]. Afisha, L'viv (in Ukrainian).
Grushko, Y. M. (1979). Vrednye neorganicheskie soedineniya v promyshlennyh stochnyh vodah [Harmful inorganic compounds in industrial wastewater]. Himiya, Leningrad (in Russian).
Gudz, S. P., Нnatush, S. O., Moroz, O. M., Peretiatko, T. B., & Vasyliv, O. M. (2013). Svidotstvo pro deponuvannya shtamu bakteriy Desulfuromonas acetoxidans Ya-2006 u Depozytariyi Instytutu mikrobiolohiyi i virusolohiyi im. D. K. Zabolotnoho NAN Ukrayiny z nadannyam reyestratsiynoho nomeru IMV V-7384 [Certificate of deposition of bacteria Desulfuromonas acetoxidans Ya-2006 strain in the Depository of D. K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine with appropriation of registration number IMV V-7384] (in Ukrainian).
Gudz, S., Нnatush, S., Peretiatko, T., Palianytsia, B., Kostruba, M., Podopryhora, O., & Klym, I. (2004). Dynamika zmin tytru sulʹfatvidnovlyuvalʹnykh bakteriy ta vmistu sulʹfativ i sirkovodnyu u vodakh kar’yeru Yavorivsʹkoho sirkovoho rodovyshcha v protsesi yoho zatoplennya [Dynamics of changes in the titres of sulfate reducing bacteria and the content of sulfates and hydrogen sulfide in the waters of the Yavoriv sulfur deposit in the course of its flooding]. Visnyk of L’viv University. Biological Series, 37, 185−189 (in Ukrainian).
Gudz, S. P., Нnatush, S. O., Yavorska, G. V., Bilinska, I. S., & Borsukevych, B. M. (2014). Praktykum z mikrobiologii' [Workshop on microbiology]. Ivan Franko National University of L’viv, Lviv (in Ukrainian).
Gudz, S. P., Peretiatko, T. B., Moroz, O. M., Hnatush, S. O., & Klym, I. R. (2011). Rehulyuvannya rivnya sul'fativ, sirkovodnyu ta vazhkykh metaliv u tekhnohennykh vodoymakh sulfatvidnovljuval'nymy bakterijamy [Regulation of sulfates, hydrogen sulfide and hard metals level in technogenic reservoirs by sulfate reducing bacteria]. Mikrobiologichny Zhurnal, 73(2), 33–38 (in Ukrainian).
Hao, O. J. (2000). Metal effects on sulfur cycle bacteria and metal removal by sulfate-reducing bacteria. Environmental technologies to treat sulfur pollution. Principles and engineering. IWA Publishing, London.
Harris, D. S. (2003). Quantitative chemical analysis. Amazon, New York.
Kozlova, I. P., Radchenko, O. S., Stepura, L. H., Kondratyuk, T. O., & Pilyashenko-Novokhatnyy, A. I. (2008). Heokhimichna diyalʹnistʹ mikroorhanizmiv ta yiyi prykladni aspekty [Geochemical activity of microorganisms and its applied aspects]. Naukova Dumka, Kyiv (in Ukrainian).
Kushkevych, I., Нnatush, S., & Gudz, S. (2007). Vplyv vazhkykh metaliv na klityny mikroorhanizmiv [The influence of heavy metals on microorganism cells]. Visnyk of L’viv University. Biological Series, 45, 3–28 (in Ukrainian).
Kuzmishyna-Diakiv, S., & Hnatush, S. (2015). Microbiota of the coal pits waste heaps. OmniScriptum GmbH & Co. KG, Lambert Academic Publishing, Saarbrücken, Germany.
Kuznetsov, A., Gradova, N., Lushnikov, S., Éngelkhart, M., Vaysser, T., & Chebotareva, M. (2015). Prikladnaya ehkobiotekhnologiya [Applied Ecobiotechnology]. Binom Laboratoriya Znanij, Moscow (in Russian).
Lengeler, J., Drevs, G., & Shlegel, G. (Eds.). (2005). Sovremennaya mikrobiologiya. Prokarioty [Contemporary Microbiology. Prokaryotes]. Mir, Moscow (in Russian).
Lovley, D. (2006). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. The Procaryotes. Springer-Verlag, LLC, New York.
Maslovska, O., & Hnatush, S. (2015). Oxidative modification of proteins and specific superoxide dismuase activity of Desulfuromonas acetoxidans ІМV В-7384 bacteria under the influence of ferric citrate. Microbiology and Biotechnology, 30, 34−40.
McEldowney, S. (1990). Microbial biosorbtion of radionuclides in liquid effluent treatment. Applied Biochemistry and Biotechnology, 5, 159–179.
Moroz, O. M. (2010). Zakonomirnosti utvorennya sirkovodnyu sulfatvidnovlyuvalnymy bakteriyamy vodoymy karyeru Yavorivskoho sirkovoho rodovyshcha [Regularities of hydrogen sulfide production by sulfate reducing bacteria from water of Yavoriv sulfur deposit open pit]. Scientific Bulletin of the Uzhgorod University. Series Biology, 27, 56–63 (in Ukrainian).
Moroz, O. M., Kolisnyk, Y. I., Podopryhora, O. I., Klym, I. R., Gudz, S. P., Borsukevych, B. M., & Hnatush, S. O. (2008). Mikroflora vody ozera “Yavorivske” [Microflora of lake “Javorivske” water]. Scientific Bulletin of the Uzhgorod University. Series Biology, 24, 131–138 (in Ukrainian).
Moroz, O. M., Peretiatko, T. B., Klym, I. R., Borsukevych, B. M., Yavorska, G. V., Kulachkovsky, O. R. (2013). Sirkovidnovlyuvalni bakteriyi ozera Yavorivske: Deyaki morfolohichni, kulturalni i fiziolohichni osoblyvosti [Sulfur reducing bacteria from Yavorivske lake: Some morphological, cultural and physiological peculiarities]. Scientific Bulletin of the Uzhgorod University. Series Biology, 35, 34–41 (in Ukrainian).
Moroz, O. M. (2013). Utvorennya hidrohen sulfidu sirkovidnovlyuvalnymy bakteriyamy za vplyvu soley vazhkykh metaliv [Formation of hydrogen sulfide by sulfur reducing bacteria under the influence of heavy metal salts]. Visnyk of L’viv University. Biological Series, 61, 154–165 (in Ukrainian).
Peretiatko, T., Gudz, S., & Halushka, A. (2009a). Vykorystannya metaliv yak kintsevykh aktseptoriv elektroniv sulfatvidnovlyuvalnymy bakteriyamy [The use of metals as final electron acceptors by sulfate reducing bacteria]. Biolohichni Studiyi, 3(3), 141–158 (in Ukrainian).
Peretiatko, T. B., Halushka, A. A., Gudz, S. P., & Нnatush, S. O. (2009b). Svidotstvo pro deponuvannya asociatsii sulfatvidnovliuvalnych bakteriy Ya-11 (Desulfovibrio desulfuricans Ya-11 i Pseudomonas sp.) u Depozytariyi Instytutu Mikrobiolohiyi i Virusolohiyi im. D. K. Zabolotnoho NAN Ukrayiny z nadannyam reyestratsiynoho nomeru IMV K-6 [Certificate of deposition of bacteria Ya-11 (Desulfovibrio desulfuricans Ya-11 and Pseudomonas sp.) association in the Depository of D. K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine with appropriation of registration number IMV K-6] (in Ukrainian).
Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology, 37, 218−224.
Saffarini, D. (2015). Metabolism of metals and metalloids by the sulfate-reducing bacteria. Bacteria-metal interactions. Springer International Publishing, Switzerland.
Silver, S., & Walderhaug, M. (1995). Bacterial plasmid-mediated resistances to mercury, cadmium and copper. Toxicology of Metals. Biochemical Aspects. Springer, Berlin.
Smirnova, G. F., & Podgorsky, V. S. (2013). Vosstanovlenie hromatov Pseudomonas sp. sht. 10 v prisutstvii nekotoryh tjazhjolyh metallov i al'ternativnyh akceptorov jelektronov [Chromates reducing by Pseudomonas sp. str. 10 in presence of some heavy metals and alternative electron acceptors]. Mikrobiologichny Zhurnal, 75(4), 8–12 (in Russian).
Solioz, M., & Stoyanov, J. (2003). Copper homeostasis in Enterococcus hirae. FEMS Microbiology Reviews, 27(2−3), 183−195.
Tarabas, O., Moroz, O., Hnatush, S., Yavorska, G., Zvir, G., & Kovalchuk, M. (2017). Ekoloho-trofichni hrupy mikroorhanizmiv vody ozera Yavorivske [Ecological trophic groups of microorganisms of Yavorivske lake water]. Visnyk of L’viv University. Biological Series, 76, 166−178 (in Ukrainian).
Vasyliv, O., & Hnatush, S. (2013). Vplyv spoluk perekhidnykh metaliv na aktyvnist superoksyddysmutazy sirkovidnovlyuvalnykh bakteriy Desulfuromonas acetoxidans [Influence of transition metal compounds on the activity of superoxide dismutase of sulfur reducing bacteria Desulfuromonas acetoxidans]. Mikrobiologichny Zhurnal, 75(2), 37–44 (in Ukrainian).
Wang, Q., Ding, D., Hu, E., Yu, R., & Qiu, G. (2008). Removal of SO42−, uranium and other heavy metal ions from simulated solution by sulfate reducing bacteria. Transactions of Nonferrous Metals Society of China, 18(6), 1529–1532.
White, C., Sayer, J. A., & Gadd, G. M. (2000). Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiology Ecology, 33, 197–208.
Winkelmann, G. (Ed). (2002). Microbial transport systems. Wiley-Vch, New York.
Yavorska, G. V., Gudz, S. P., & Нnatush, S. O. (2008). Promyslova mikrobiolohiya [Industrial microbiology]. Publishing Center of Ivan Franko National University of Lviv, Lviv (in Ukrainian).