Sensitivity and resistance of communities: Evaluation on the example of the influence of edaphic, vegetation and spatial factors on soil macrofauna


  • O. V. Zhukov Oles Honchar Dnipro National University http://orcid.org/0000-0003-3661-3012
  • O. M. Kunah Oles Honchar Dnipro National University http://orcid.org/0000-0002-3631-8884
  • Y. Y. Dubinina Melitopol Institute of Ecology and Social Technologies of the Open International University of Human Development "Ukraine"
Keywords: stability, environmental factors, neutral diversity, niche theory, spatial ecology, indicator value, PCNM-analysis

Abstract

Environmental stability is a multifaceted concept and includes properties such as asymptotic stability, robustness, persistence, variability, elasticity and resistance. Resistance reflects the ability of a community or population to remain in a substantially unaltered state under external influence. The reverse of resistance is sensitivity. This article suggests a way to assess the sensitivity of animal communities to factors of various character and explain sensitivity and resistance of the macrofauna community near the floodplain of the river Dnieper within the "Dnipro-Orelsky" Nature Reserve to the effects of edaphic and plant factors, as well as spatial variables. It is shown that the regulatory impact of environmental factors is refracted through the properties of ecological systems themselves, namely resistance and sensitivity. If an ecological system does not react to changing environmental factors, such a system is indifferent with respect to these factors. In the case of regulatory influence of factors, there may be resistance, sensitivity and the proportionality of the response of the ecological system. The ratio of the specific role of a factor in the variability of a community to the contribution of the main components of the total variability of the attributive space makes it possible to assess the resistance, sensitivity and proportionality of response the ecological system to the action of that factor. If the ratio is >1, then this indicates sensitivity: level of variability of a community is higher than the relative role of environmental factors in the changing of the attributive space. If <1, this indicates resistance: the level of variability of a community is lower than the relative role of environmental factors in the changing of the attributive space. If the ratio =1 (≈1), changes in the community are proportional to the level of the main components of variation in comparison with other components. Ecological factors (both external environmental and internal due to species interactions and which have a neutral nature) cause different levels of community response to their impact. These differences refracted through different aspects of stability of a community can be described using the categories resistance, sensitivity and proportionality. The proposed procedure for quantification of specified properties of sustainability has established that the floodplain soil macrofauna is endowed with resistance to factors that prevail on the level of its variation. However, macrofauna is highly sensitive to minor factors. The community of the soil inhabitants is sensitive to fine-scale variations, which have a neutral nature.

References

Adler, P. B., Hillerislambers, J., & Levine, J. M. (2007). A niche for neutrality. Ecology Letters, 10, 95–104.

Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: A synthesis. Ecology Letters, 6, 1109–1122.

Anderson, J. M. (1975). The enigma of soil animal species diversity. In: Vanek, J. (Ed.). Progress in soil zoology. Academia, Prague. pp. 51–57.

Anderson, M. J. (2011). Navigating the multiple meanings of β-diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19–28.

Baldeck, C. A., Harms, K. E., Yavitt, J. B., John, R., Turner, B. L., Valencia, R., Navarrete, H., Davies, S. J., Chuyong, G. B., Kenfack, D., Thomas, D. W., Madawala, S., Gunatilleke, N., Gunatilleke, S., Bunyavejchewin, S., Kiratiprayoon, S., Yaacob, A., Supardi, M. N., & Dalling, J. W. (2013). Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B, 280, 2012–2032.

Barot, S., & Gignoux, J. (2004). Mechanisms promoting plant coexistence: Can all the proposed processes be reconciled? Oikos, 106, 185–192.

Belgard, A. L. (1971). Stepnoe lesovedenye [Steppe forestry]. Forest Industry, Moscow (in Russian).

Belgard, A. L. (1950). Lesnaja rastitel’nost’ jugo-vostoka USSR [Forest vegetation of south-eastern part of Ukraine]. KGU im. Shevchenko Press, Kyiv (in Russian).

Brygadyrenko, V. V. (2015). Vplyv umov zvolozhennja ta mineralizacii gruntovogo rozchynu na strukturu pidstylkovoi’ mezofauny shyrokolystjanyh lisiv stepovoi’ zony Ukrai’ny [Influence of moisture conditions and mineralization of soil solution on structure of litter macrofauna of the deciduous forests of Ukraine steppe zone]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 23(1), 50–65 (in Ukrainian).

Brygadyrenko, V. V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102.

Belyea, L. R., & Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos, 86(3), 402–416.

Berg, M. P., & Bengtsson, J. (2007). Temporal and spatial variability in soil food web structure. Oikos, 116, 1789–1804.

Blanchet, F. G., Bergeron, J. A. C., Spence, J. R., & He, F. (2013). Landscape effects of disturbance, habitat heterogeneity and spatial autocorrelation for a ground beetle (Carabidae) assemblage in mature boreal forest. Ecography, 36, 636–647.

Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623–2632.

Borcard, D., & Legendre, P. (1994). Environmental control and spatial structure in ecological communities: An example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1, 37–61.

Borcard, D., Legendre, P., Avois-Jacquet, C., & Tuosimoto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.

Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055.

Burdon, F. J., Reyes, M., Alder, A. C., Joss, A., Ort, C., Räsänen, K., Jokela, J., Eggen, R. I., & Stamm, C. (2016). Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams. Ecology and Evolution, 6(12), 3923–3939.

Buzuk, G. N., & Sozinov, O. V. (2009). Regressionnyy analiz v fitoindikatsii (na primere ekologicheskikh shkal D. N. Tsyganova) [Regression analysis in the bioindication (ecological scales D. N. Tsyganova as example)]. Botanika (issledovaniya). Institutt Eksperimental’noj Botaniki NAN Belarusi. Pravo i Ekonomika, Minsk, 37, 356–362 (in Russian).

Cadotte, M. W., & Fukami, T. (2005). Dispersal, spatial scale and species diversity in a hierarchically structured experimental landscape. Ecology Letters, 8, 548–557.

Caruso, T., Taormina, M., & Migliorini, M. (2012). Relative role of deterministic and stochastic determinants of soil animal community: A spatially explicit analysis of oribatid mites. Journal of Animal Ecology, 81(1), 214–221.

Chang, L., Zeleny, D., Li, C., Chiu, S., & Hsieh, C. (2013). Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145–2151.

Chase, J. M. (2003). Community assembly: When should history matter? Oecologia, 136, 489–498.

Chave, J. (2004). Neutral theory and community ecology. Ecology Letters, 7, 241–253.

Clark, J. S. (2012). The coherence problem with the unified neutral theory of biodiversity. Trends in Ecology and Evolution, 27, 199–203.

Decaëns, T., Jiménez, J. J., & Rossi, J.-P. (2009). A null-model analysis of the spatio-temporal distribution of earthworm species assemblages in Colombian grasslands. Journal of Tropical Ecology, 25(4), 415–427.

Decaëns, T., & Rossi, J.-P. (2001). Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecograpgy, 24(6), 671–682.

Diduh, Y. P. (2012). Prinzypy bioindicatzii [The principles of the bioindication]. Naukova Dumka, Kyiv (in Ukranian).

Didukh, Y. P., Fitsailo, T. V., Korotchenko, I. A., Yakushenko, D. M., & Pashkevych, N. A. (2011). Biotopi lisovoi ta lisostepovoi zon Ukrainy [Biotopes of forest and forest-steppe zones of Ukraine]. LLC Macros, Kyiv (in Ukranian).

Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.

Digel, C., Curtsdotter, A., Riede, J., Klarner, B., & Brose, U. (2014). Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos, 123, 1157–1172.

Donohue, I., Petchey, O. L., Montoya, J. M., Jackson, A. L., McNally, L., Viana, M., Healy, K., Lurgi, M., O’Connor, N. E., & Emmerson, M. C. (2013). On the dimensionality of ecological stability. Ecology Letters, 16, 421–429.

Dornelas, M. (2010). Disturbance and change in biodiversity. Philosophical Transactions of the Royal Society B, 365, 3719–3727.

Drake, J. A. (1990). Communities as assembled structures: Do rules govern pattern? Trends in Ecology and Evolution, 5, 159–164.

Dray, S., Legendre, P., & Peres-Neto, P. (2006). Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecological Modelling, 196, 483–493.

Ellenberg, H. (1974). Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica. Göttingen, 9, 197.

Ellwood, M. D., Manica, F. A., & Foster, W. A. (2009). Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12, 277–284.

Ettema, C., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology and Evolution, 17, 177–183.

Ettema, C. H., Rathbun, S. L., & Coleman, D. C. (2000). On spatiotemporal patchiness and the coexistence offive species of Chronogaster (Nematoda: Chronogasteridae) in a riparian wetland. Oecologia, 125, 444–452.

Fukami, T. (2010). Community assembly dynamics in space. In: Verhoef, H. A., & Morin, P. J. (Eds.). Community ecology: Processes, models, and applications. Oxford University Press, Oxford.

Gazol, A., & Ibanez, R. (2010). Plant species composition in a temperate forest: Multi-scale patterns and determinants. Oecologia, 36, 634–644.

Gonzalez, A. (2009). Metacommunities: Spatial community ecology. Wiley, Hoboken, NJ.

Grimm, V., Schmidt, E., & Wissel, C. (1992). On the application of stability concepts in ecology. Ecological Modelling, 63, 143–161.

Grimm, V., & Wissel, C. (1997). Babel, or the ecological stability discussions: An inventory and analysis of terminology and a guide for avoiding confusion. Oecologia, 109, 323–334.

Hu, Y.-H., Sheng, D.-Y., Xiang, Y.-Z., Yang, Z.-J., Xu, D.-P., Zhang, N.-N., & Shi, L.-L. (2013). The environment, not space, dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation. PLoS ONE, 8(11), e81308.

Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA.

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415–427.

Hutchinson, G. E. (1965). The niche: An abstractly inhabited hypervolume. The ecological theatre and the evolutionary play. Yale University Press, New Haven.

Ives, A. R. (1995). Measuring resilience in stochastic systems. Ecological Monographs, 65, 217–233.

Ives, A. R. (1999). Stability and variability in competitive communities. Science, 286(5439), 542–544.

Jiménez, J. J., Decaëns, T., Lavelle, P., & Rossi, J.-P. (2014). Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability, BMC Ecology, 14–26.

Jiménez, J. J., Decaëns, T., & Rossi, J.-P. (2012). Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121, 915–926.

Jorgensen, H. B., Elmholt, S., & Petersen, H. (2003). Collembolan dietary specialisation on soil grown fungi. Biology and Fertility of Soils, 39, 9–15.

Karpachevsky, L. O. (2005). Ecologicheskoe pochvovedenie [Ecological pedology]. Moscow, Geos (in Russian).

Kirby, K. N., & Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45, 905–927.

Laliberte, A. S., Rango, A., Herrick, J. E., Fredrickson, E. L., & Burkett, L. (2009). An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments, 69, 1–14.

Laliberte, E., Paquette, A., Legendre, P., & Bouchard, A. (2009). Assessing the scale-specific importance of niches and other spatial processes on beta diversity: A case study from a temperate forest. Oecologia, 159, 377–388.

Lawton, J. (1999). Are there general laws in ecology? Oikos, 84, 177–192.

Legendre, P. (1993). Spatial autocorrelation: Trouble or new paradigm? Ecology, 74, 1659–1673.

Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435–450.

Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.-F., & He, F. (2009). Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90, 663–674.

Maraun, M., Martens, H., Migge, S., Theenhaus, A., & Scheu, S. (2003). Adding to ‘the enigma of soil animal diversity’: Fungal feeders and saprophagous soil invertebrates prefer similar food substrates. European Journal of Soil Biology, 39, 85–95.

Martins da Silva, P., Berg, M. P., Serrano, A. R. M., Dubs, F., & Sousa, J. P. (2012). Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests. Landscape Ecology, 27, 1337–1349.

McArdle, B. H., & Anderson, M. J. (2004). Variance heterogeneity, transformations and models of species abundance: A cautionary tale. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1294–1302.

Murphy, S. J., Audino, L. D., Whitacre, J., Eck, J. L., Wenzel, J. W., Queenborough, S. A., & Comita, L. S. (2015). Species associations structured by environment and land-use history promote beta-diversity in a temperate forest. Ecology, 96(3), 705–715.

Odum, E. (1953). Fundamentals of Ecology. Saunders, Philadelphia.

Pennisi, B. V., & van Iersel, M. (2002). 3 ways to measure medium EC. GMPro, 22(1), 46–48.

Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326.

Rossi, J. P. (2003). Clusters in earthworm spatial distribution. Pedobiologia, 47(5–6), 490–496.

Rossi, J.-R., Lavelle, P., & Tondoh, J. E. (1996). Statistical tool for soil biology. XI. Autocorrelogram and Mantel test. European Journal of Soil Biology, 32, 195–203.

Saetre, P. (1999). Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22, 183–192.

Schneider, K., Migge, S., Norton, R. A., Scheu, S., Langel, R., Reineking, A., & Maraun, M. (2004). Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (N-15/N-14). Soil Biology and Biochemistry, 36, 1769–1774.

Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185(4145), 27–39.

Siefert, A., Ravenscroft, C., Weiser, M. D., & Swenson, N. G. (2012). Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecology and Biogeography, 22(6), 682–691.

Soinenen, J., Lennon, J. J., & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology, 88, 2830–2838.

Steiner, C. F., Long, Z. T., Krumins, J. A., & Morin, P. J. (2005). Temporal stability of aquatic food webs: Partitioning the effects of species diversity, species composition and enrichment. Ecology Letters, 8, 819–828.

Takeda, H. (1987). Dynamics and maintenance of collembolan community structure in a forest soil system. Researches on Population Ecology, 29, 291–346.

Tarasov, V. V. (2012). Flora Dnipropetrovs’koi’ ta Zaporiz’koi’ oblastej. Sudynni roslyny. Biologo-ekologichna harakterystyka vydiv [Flora of Dnipropetrovsk and Zaporizhzhya regions. Vascular plants. Biologycal and ecological characteristics of the species]. Dnipropetrovsk University Press, Dnipropetrovsk (in Ukrainian).

Tilman, D., Reich, P. B., & Knops, J. M. H. (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629–632.

Tsatsenkin, I. A. (1970). Ekologicheskaya otsenka kormovykh ugodiy Karpat i Balkan po rastitelnomu pokrovu [Ecological evaluation of the fodder lands of the Carpathians and the Balkans on vegetation]. Institute of Forages, Moscow (in Russian).

Vadunina, A. F., & Korchagina, S. A. (1986). Metody issledovaniya fizicheskikh svoystv pochv [Methods for research of physical properties of the soil]. Agropromizdat, Moscow.

Viketoft, M. (2013). Determinants of small-scale spatial patterns: Importance of space, plants and abiotics for soil nematodes. Soil Biology and Biochemistry, 62, 92–98.

Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870–886.

Weslien, J., Djupström, L. B., Schroeder, M., & Widenfalk, O. (2011). Long-term priority effects among insects and fungi colonizing decaying wood. Journal of Animal Ecology, 80, 1155–1162.

Whalen, J. K. (2004). Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of Southwestern Quebec, Canada. Applied Soil Ecology, 27(2), 143–151.

Whittaker, R. H. (1960). Vegetation of the siskiyou mountains, Oregon and California. Ecological Monographs, 30, 279–338.

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxonomy, 21, 213–251.

Widenfalk, L. A., Bengtsson, J., Berggren, Å., Zwiggelaar, K., Spijkman, E., Huyer-Brugman, F., & Berg, M. P. (2015). Spatially structured environmentalfiltering of collembolan traits in late successional salt marsh vegetation. Oecologia, 179(2), 537–549.

Wilson, J. B., & Habiba, G. (1995). Limitation to species coexistence: Evidence for competition from field observations, using a patch model. Journal of Vegetation Science, 6, 369–376.

Zhukov, A. V. (2015). Foromorfy v sisteme ekomorf pochvennykh zhivotnykh [Phoromorphs in ecomorphs system of soil animals]. The Journal of V. N. Karazin Kharkiv National University. Series: Biology, 25, 254–266 (in Russian).

Zhukov, A. V., Kunakh, O. N., & Novikova, V. A. (2015). Ekomorficheskaya organizaciya soobshchestv mezopedobiontov dubnyaka so svezhim raznotrav’em na arene r. Dnepr [The ecomorphic organization of mesopedobionts community of oak forest with the fresh grass on arena of the Dnieper river]. The Kharkov Entomological Society Gazette, 23(2), 39–53 (in Russian).

Zhukov, A. V., Shtirts, A. D., Zadorozhnaja, G. A., & Kunah, O. N. (2013). Frakcionirovanie prostranstvennoj variacii soobshchestva pancirnyh kleshchej (Acari: Oribatida) v pochve sel’skohozyajstvennogo polya v usloviyah stepnoj zony Ukrainy [Fractionation of oribatid mites (Acari: Oribatida) community spatial structure in soil of agricultural field in Ukraine steppe zone]. Problems of Ecology and Environmental Protection of Technogenic Region, 1(13), 87–105 (in Russian).

Zhukov, A., & Zadorozhnaya, G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: The ecological approach. Ekológia (Bratislava), 35, 263–278.

Zhukov, A. V. (2005). Bioraznoobrazie i ustojchivost’ v prostranstve pochvennoj mezofauny [Biodiversity and spatial stability of soil mesofauna]. Ecology and Noospherology, 16(3–4), 165–177 (in Russian).

Zhukov, O. V., & Gubanova, N. L. (2015). Riznomanittya ta dynamika uhrupovan’ zemnovodnykh zaplavnykh ekosystem r. Samara-Dniprovs’ka [Diversity and dynamics of amphibians in floodplain ecosystems of the Samara river]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 23(1), 66–73 (in Ukranian).

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., & Ganzha, D. S. (2017). Riznomanittya ta fitoindykatsiyni mozhlyvosti roslynnoho uhrupovannya [Diversity and phytoindication ability of plant community]. Ukrainian Journal of Ecology, 7(4), 81–99 (in Ukranian).

Zhukov, O. V., Kunah, O. N., & Novikova, V. A. (2016). Funkcional’naya struktura soobshchestva mezopedobiontov dernovo-borovoj pochvy areny r. Dnepr [The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr]. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 26–39 (in Russian).
Published
2017-11-16
Section
Articles