The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin
Abstract
The restoration of a stable and productive ecosystem after drastic disturbances to the natural environment due to mining and open-cast mining may be achieved by means of reclamation. Investigation of the hydrological budget of technosols is important task in developing adequate approaches to reclamation. Sod lithogenic soils on red-brown clay, on grey-green clay were chosen as the objects of the investigation. The simulation of moisture content in Nikopol Manganese Ore Basin technosols was performed using the Penman-Monteith approach and evaluated the role of the dependence of soils’ surface albedo on the humidity in the intensity of evapotranspiration. The research was conducted during 2013–2015 at the station for research on reclaimed land within the Nikopol Manganese Ore Basin (city Pokrov, Ukraine). The experimental area for the study of optimal modes of agricultural reclamation was created in 1968–1970. Precipitation in the investigated area was found to fall very unevenly in time. In 2013, the duration of the rainless period was 259 days, in 2014 – 264 days, in 2015 – 261 days. The maximum daily rainfall varies within 18–49 mm. There are significant interannual differences in the intensity of rainfall. The minimum total annual precipitation in 2014 was due to a decrease in atypical rainfall in late winter and early winter. The maximum annual rainfall in 2015 was caused by intense rainfall both in the spring and in mid-summer and late autumn. The average annual temperature was 11.1 ºC and the annual totals did not statistically significantly vary within the study period. The average wind speed and average atmospheric humidity are statistically significantly different from year to year. The technosols’ colour properties and surface albedo varied depending on the moisture content. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. The evaluation of readily available water content was carried out based on the Penman-Monteith model taking into account meteorological data, the water-physical properties of the technosols and the dependence of soil surface albedo on soil humidity. The distribution of this index for different teсhnosols is characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. A complex mixture of normal distributions is the best model for representing the experimental data. The readily available water content distribution can best be represented as a mixture of two normal distributions. The relatively high moisture level is characterized for winter and spring periods. Water content in sod-lithogenic soils on red-brown clay over the period of research never reached the value of the permanent wilting point. In 2013, the period when the moisture content was less than the value of the permanent wilting point lasted 23 days, and in 2014 this period lasted 39 days. Thus, you can always expect the phenomenon of drought under typical climatic conditions for the technosols on grey-green clay. It was found that monitoring water supplies before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. The results indicate the urgency of measures to save the winter rainfall on the fields.References
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. Pp. 1–15.
Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994a). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.
Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994b). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.
Brygadyrenko, V. V. (2015b). Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera, Carabidae) against the background of eight ecological factors. Folia Oecologica, 42(2), 75–88.
Brygadyrenko, V. V. (2016a). Evaluation of ecological niches of abundant species of Poecilus and Pterostichus (Coleoptera: Carabidae) in forests of the steppe zone of Ukraine. Entomologica Fennica, 27(2), 81–100.
Evett, S. R., Prueger, J. H., & Tolk, J. A. (2011). Water and energy balances in the soil-plantatmosphere continuum. In: Huang, P. M., Li, Y., & Sumner, M. E. (Eds.). Handbook of soil sciences: Properties and processes. 2nd ed. CRC Press, Boca Raton.
Frouz, J., & Kuráž, V. (2014). Soil fauna and soil physical properties. In: Frouz, J. (Ed.). Soil biota and ecosystem development in post mining sites. CRC Press, Boca Raton.
Hess, T. M. (1996). Evapotranspiration estimates for water balance scheduling in the UK. Irrigation News, 25, 31–36.
Jackson, R. J. (1967). The effect of slope, aspect and albedo on potential evapotranspiration from hillslopes and catchments. Journal of Hydrology (New Zealand), 6(2), 60–69.
Monteith, J. L. (1965). Evaporation and the environment. In: The state and movement of water in living organisms. 19th Symposium of the Society for Experimental Biology. Cambridge University Press, London. Pp. 205–234.
Penman, H. L. (1948). Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Reynolds, J., Kemp, P., & Tenhunen, J. (2000). Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan desert: A modeling analysis. Plant Ecology, 150, 145–159.
Sharma, M. L. (1985). Estimating evapotranspiration. Advances in Irrigation, 3, 213–281.
Singh, P., Ram, S., & Ghosh, A. K. (2015). Changes in physical properties of mine soils brought about by planting trees. Ecology, Environment and Conservation Paper, 21, AS187–AS193.
Teixeira, J. L., & Pereira, L. S. (1992). ISAREG, an irrigation scheduling model. ICID Bulletin, 41(2), 29–48.