Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols

Keywords: molluscs; marginality; biodiversity; ecological niche; spatial distribution; ecological niche factor analysis


The aim of our work is to describe the ecological niche of the land snail Brephulopsis cylindrica (Menke, 1828) in terms of the edaphic properties and properties of the vegetation cover and to show the spatial features of the variation of the habitat preference index within the artificial soil body – technosols (soddy-lithogenic soils on loess-like clays) using the ecological niche factor analysis (ENFA). The research was carried out at the Research Centre of the Dnipro Agrarian and Economic University in Pokrov. Sampling was carried out on a variant of artificial soil (technozems) formed on loess-like clays. The test site where the sampling was conducted consists of 7 transects of 15 samples each. Test points form a regular grid with a mesh size of 3 m. Soil mechanical impedance, aggregate-size distribution, soil electrical conductivity, vegetation physiognomic characteristics, and Didukh phytoindication scales were used as ecogeographic predictors of the mollusc’s ecological niche properties. Phytoindication assessment indicates that the technosol ecological regimes are favourable for sub-mesophytes, hemi-hydrocontrastophiles, neutrophiles, semi-eutrophs. The test for statistical significance showed that an axis of marginality of the ecological niche of B. cylindrica and axes of specialization are significantly different from the random distribution. We found that the ecological niche of the mollusc is determined by both edaphic factors and ecological features of vegetation. The marginality of B. cylindrica ecological niche over the entire period of study is determined mainly by preferences for physiognomic vegetation types, higher values of the continentality and thermality regimes. Often greater content in the soil of aggregates 1–3 mm in size coincides with greater numbers of B. cylindrica individuals. Individuals of this species avoid physiognomic type III and areas with higher soil alkalinity and mineralization detected both by means of the phytoindication approach and soil electrical conductivity data. Ecological niche optima may be presented by integral variables such as marginality and specialization axes and plotted in geographic space. The spatial distribution of the B. cylindrica habitat suitability index (HSI) within the technosols is shown, which makes it possible to predict the optimal conditions for the existence of the species.


Adamova, V., Snegin, E., & Barkhatov, A. (2018). Demograficheskaya i prostranstvennaya struktura koloniy kserofil'nykh mollyuskov-vselentsev na territorii g. Belgoroda [Demographic and spatial structure of invasive xerophilous snails colonies in the territory of Belgorod]. Principy Ekologii, 7(3), 4–12 (in Russian).
Balashov, I. A., Kramarenko, S. S., Zhukov, A. V., Shklyaruk, A. N., Baidashnikov, A. A., & Vasyliuk, A. V. (2013). Contribution to the knowledge of terrestrial molluscs in Southeastern Ukraine. Malacologica Bohemoslovaca, 12, 62–69.
Balashov, I., & Gural-Sverlova, N. (2012). An annotated checklist of the terrestrial molluscs of Ukraine. Journal of Conchology, 41(1), 91–109.
Balashov, I., Kramarenko, S., Shyriaieva, D., & Vasyliuk, O. (2018). Invasion of a Crimean land snail Brephulopsis cylindrica into protected relict steppic hilltops (tovtrs) in Western Ukraine: A threat to native biodiversity? Journal of Conchology, 43, 59–69.
Balashov. I. A., & Baidashnikov, A. A. (2013). Nazemnye mollyuski redkolesiy mozhzhevel'nika vysokogo v Krymskikh gorakh [Terrestrial molluscs in sparse Greek juniper forests of the Crimean Mountains]. Zoologicheskii Zhurnal, 92(3), 257–263 (in Russian).
Biggs, B. J. F. (1990). Periphyton communities and their environmental gradients in New Zealand rivers. New Zealand Journal of Marine and Freshwater Research, 24, 367–386.
Bohan, D. A., Glen, D. M., Wiltshire, C. W., & Hughes, L. (2000). Parametric intensity and the spatial arrangement of the terrestrial mollusc herbivores Deroceras reticulatum and Arion intermedius. Journal of Animal Ecology, 69(6), 1031–1046.
Buzuk, G. N. (2017). Phytoindication with ecological scales and regression analysis: Environmental index. Bulletin of Pharmacy, 76, 31–37.
Calenge, C. (2006). The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197, 516–519.
Calenge, C., & Basille, M. (2008). A general framework for the statistical exploration of the ecological niche. Journal of Theoretical Biology, 252(4), 674–685.
Calenge, C., Darmon, G., Basille, M., Loison, A., & Jullien, J. M. (2008). The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology, 89(2), 555–566.
Caruso, N., Guerisoli, M., Luengos Vidal, E. M., Castillo, D., Casanave, E. B., & Lucherini, M. (2015). Modelling the ecological niche of an endangered population of Puma concolor: First application of the GNESFA method to an elusive carnivore. Ecological Modelling, 297, 11–19.
Čejka, T., & Hamerlík, L. (2009). Land snails as indicators of soil humidity in Danubian Woodland (SW Slovakia). Polish Journal of Ecology, 57, 741–747.
Cernohorsky, N. H., Horsak, M., & Cameron, R. A. D. (2010). Land snail species richness and abundance at small scales: The effect of distinguishing between live individuals and empty shells. Journal of Conchology, 40, 233–241.
Coles, B. F., & Nekola, J. C. (2007). Vertigo malleata, a new extreme calcifuge land snail from the Atlantic and Gulf coastal plains of the U.S.A. (Gastropoda, Vertiginidae). Nautilus, 121, 17–28.
Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.
Dvořáková, J., & Horsák, M. (2012). Variation of snail assemblages in hay meadows: Disentangling predictive power of abiotic environment and vegetation. Malacologia, 55, 151–162.
Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.
Gural-Sverlova, N. V., & Gural, R. I. (2012). Vyznachnyk nazemnyh moliuskiv Ukrajiny [Guide to the terrestrial mollusks of Ukraine]. Lviv (in Ukrainian).
Hall, L., Krausman, P., & Morrison, M. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173–182.
Halstead, B. J., Wylie, G. D., & Casazza, M. L. (2010). Habitat suitability and conservation of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley of California. Copeia, 2010, 591–599.
Hemery, L., Galton–Fenzi, B., Améziane, N., Riddle, M., Rintoul, S., Beaman, R., Post, A., & Eléaume, M. (2011). Predicting habitat preferences for Anthometrina adriani (Echinodermata) on the East Antarctic continental shelf. Marine Ecology Progress Series, 441, 105–116.
Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027–2036.
Horsák, M. (2006). Mollusc community patterns and species response curves along a mineral richness gradient: A case study in fens. Journal of Biogeography, 33, 98–107.
Horsák, M., & Hájek, M. (2003). Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: The poor-rich gradient. Journal of Molluscan Studies, 69, 349–357.
Horsák, M., Hájek, M., Tichý, L., & Juřičková, L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica, 32, 161–171.
Hylander, K., Nilsson, C., Jonsson, B. G., & Gothner, T. (2005). Differences in habitat quality explain nestedness in a land snail metacommunity. Oikos, 108, 351–361.
IUSS Working Group WRB (2007). World reference base for soil resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome.
Juřičková, L., Horsák, M., Cameron, R., Hylander, K., Mikovcová, A., Hlaváč, J. C., & Rohovec, J. (2008). Land snail distribution patterns within a site: The role of different calcium sources. European Journal of Soil Biology, 44, 172–179.
Kearney, M. P., & Cameron, R. A. D. (1979). A field guide to the land snails of Britain and North West Europe. Collins, London.
Kearney, M., Simpson, S. J., Raubenheimer, D., & Helmuth, B. (2010). Modelling the ecological niche from functional traits. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1557), 3469–3483.
Klimkina, I., Kharytonov, M., & Zhukov, O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82–93.
Kralka, R. A. (1986). Population characteristics of terrestrial gastropods in boreal forest habitats. American Midland Naturalist, 115, 156–164.
Kramarenko, S. S. (1997). Nekotorye aspekty ekologii nazemnykh mollyuskov Brephulopsis cylindrica (Gastropoda; Buliminidae) [Some aspects of the land snail Brephulopsis cylindrica ecology (Gastropoda; Buliminidae)]. Vestnik Zoologii, 31(4), 51–54 (in Russian).
Kramarenko, S. S. (2009). Osobennosti vnutri- i mezhpopulyatsionnoy struktury konkhiometricheskoy izmenchivosti nazemnogo mollyuska Brephulopsis cylindrica (Gastropoda, Pulmonata, Buliminidae) [Peculiarities of the intra- and inter-population structure of the land snail Brephulopsis cylindrica (Gastropoda, Pulmonata, Buliminidae) conchiometry variability]. Vestnik Zoologii, 43(1), 51–58 (in Russian).
Kramarenko, S. S., & Dovgal, I. V. (2014). Spatial variation of the land snail Brephulopsis cylindrica (Gastropoda, Pulmonata, Enidae): A fractal approach. Vestnik Zoologii, 48(5), 435–440.
Kramarenko, S. S., & Popov, V. N. (1993). Izmenchivost' morfologicheskikh priznakov nazemnykh mollyuskov roda Brephulopsis Lindholm, 1925 (Gastropoda; Pulmonata; Buliminidae) v zone introgressivnoy gibridizatsii [Variation of morphological traits in land snails, Brephulopsis Lindholm, 1925 (Gastropoda; Pulmonata; Buliminidae) in the introgressive hybridisation zone]. Zhurnal Obschey Biologii, 54(6), 682–690 (in Russian).
Kramarenko, S. S., & Snegin, E. A. (2015). Genetic structure of the continuous and ephemeral populations of the land snail Brephulopsis cylindrica (Gastropoda; Pulmonata; Enidae). Russian Journal of Genetics: Applied Research, 5(5), 469–478.
Książkiewicz, Z., Kiaszewicz, K., & Gołdyn, B. (2013). Microhabitat requirements of five rare vertiginid species (Gastropoda, Pulmonata: Vertiginidae) in wetlands of Western Poland. Malacologia, 56, 95–107.
Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Kramarenko, A. S., & Yorkina, N. V. (2018). Fitting competing models and evaluation model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems, 9(2), 198–202.
Locasciulli, O., & Boag, D. (1987). Microdistribution of terrestrial snails (Stylommatophora) in forest litter. Canadian Field Naturalist, 101, 76–81.
Luchtel, D. L., & Deyrup-Olsen, I. (2001). Body wall: Form and function. In: Barker, G. M. (Ed.) The biology of terrestrial molluscs. CABI Publishing, Trowbridge. Pp. 447–488.
Martin, K., & Sommer, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31, 531–545.
Maslikova, K. P., Ladska, I. V., & Zhukov, O. V. (2016). Permeability of soils in artificially created models with different stratigraphy. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 234–247.
McClain, C., & Nekola, J. C. (2008). The role of local-scale on terrestrial and deep-sea gastropod body size distributions across multiple scales. Evolutionary Ecology Research, 10, 129–146.
Millar, A. J., & Waite, S. (1999). Molluscs in coppice woodland. Journal of Conchology, 36, 25–48.
Müller, J., Strätz, C., & Hothorn, T. (2005). Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 124, 233–242.
Myšák, J., Horsák, M., Svobodová, E., & Cernohorsky, N. (2013). Small-scale distribution of terrestrial snails: Patterns of species richness and abundance related to area. Journal of Molluscan Studies, 79(2), 118–127.
Nekola, J. C. (2003). Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Diversity and Distributions, 9(1), 55–71.
Nekola, J. C., & Smith, T. M. (1999). Terrestrial gastropod richness patterns in Wisconsin carbonate cliff communities. Malacologia, 41(1), 253–269.
Ondina, P., Hermida, J., Outeiro, A., & Mato, S. (2004). Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Applied Soil Ecology, 26(1), 1–9.
Ondina, P., Mato, S., Hermida, J., & Outeiro, A. (1998). Importance of soil exchangeable cations and aluminium content on land snail distribution. Applied Soil Ecology, 9(1–3), 229–232.
Skov, H., Humphreys, E., Garthe, S., Geitner, K., Gremillet, D., Hamer, K. C., Hennicke, J., Parner, H., & Wanless, S. (2008). Application of habitat suitability modelling to tracking data of marine animals as a means of analysing their feeding habitats. Ecological Modelling, 212, 504–512.
Stoll, P., Gatzsch, K., Rusterholz, H. P., & Baur, B. (2012). Response of plant and gastropod species to knotweed invasion. Basic and Applied Ecology, 13, 232–240.
Sverlova, N. V., Khlus, L. N., Kramarenko, S. S., Son, M. O., Leonov, S. V., Korol, E. N., Vychalkovskaya, N. V., Zemoglyadchuk, K. V., Kyrpan, S. P., Kuzmovich, M. L., Stenko, R. P., Ferents, O. G., Shklaruk, A. N., & Gural, R. I. (2006). Fauna, ekologiya i vnutrividovaya izmenchivost' nazemnykh mollyuskov v urbanizirovannoy srede [Fauna, ecology and intraspecific variability of the terrestrial molluscs in an urban environment]. National Museum of Natural History at the NAS of Ukraine, Lviv (in Russian).
Szybiak, K., Błoszyk, J., Koralewska-Batura, E., & Gołdyn, B. (2009). Small-scale distribution of wintering terrestrial snails in forest site: Relation to habitat conditions. Polish Journal of Ecology, 57, 525–535.
Thiebot, J.-B., Lescroel, A., Pinaud, D., Trathan, P. N., & Bost, C.-A. (2011). Larger foraging range but similar habitat selection in non-breeding versus breeding sub Antarctic penguins, Antarctic Science, 23, 117–126.
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007). A comparative evaluation of presence – only methods for modelling species distribution. Diversity and Distributions, 13, 397–405.
Vitchalkovskaya, N. V., & Kramarenko, S. S. (2006). Osobennosti migratsionnoy aktivnosti nazemnykh mollyuskov Brephulopsis cylindrica (Pulmonata, Buliminidae) [The migratory activity peculiarities of the land snail Brephulopsis cylindrica (Pulmonata, Buliminidae)]. Vestnik Zoologii, 40(2), 155–159 (in Russian).
Vychalkovskaya, N. V. (2008). Rasprostranenie i vnutrividovaya izmenchivost' krymskogo endemichnogo mollyuska Brephulopsis cylindrica (Gastropoda, Pulmonata, Buliminidae) za predelami nativnogo areala [Distribution and intraspecific variability of a Crimean endemic snail Brephulopsis cylindrica (Gastropoda, Pulmonata, Buliminidae) outside the native range]. Vestnik Zoologii, 42(3), 229–235.
Walden, H. W. (1981). Communities and diversity of land molluscs in Scandinavian woodlands. I. High diversity communities in taluses and boulder slope in SW Sweden. Journal of Conchology, 30, 351–372.
Wali, M. K. (1999). Ecological succession and rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213(1), 195–220.
Weaver, K. F., Anderson, T., & Guralnick, R. (2006). Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Diversity and Distributions, 12, 756–766.
Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol Manganese Ore Basin, Ukraine). Ecologica Montenegrina, 17, 29–45.
Zhukov, A. V., Andrusevich, K. V., Lapko, K. V., & Sirotina, V. O. (2015). Geostatistical estimation of soil aggregate structure as a composite variable. Biological Bulletin, 3, 101–121.
Zhukov, A. V., Kunah, O. N., Novikova, V. A., & Ganzha, D. S. (2016). Phytoindication estimation of soil mesopedobionts communities catena and their ecomorphic organization. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 91–117.
Zhukov, O. V., & Gubanova, N. L. (2015). Dynamic stability of communities of amphibians in short-term-flooded forest ecosystems. Visnyk of Dnipropetrovsk University. Biology, Ecology, 23(2), 161–171.
Zhukov, O. V., & Maslikova, K. P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology, 27(2), 399–407.
Zhukov, O. V., Kunah, O. N., & Novikova, V. A. (2016). The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 26–39.