The influence of Cameraria ohridella (Lepidoptera, Gracillariidae) on the activity of the enzymatic antioxidant system of protection of the assimilating organs of Aesculus hippocastanum in an urbogenic environment
Abstract
In the last two decades, the horse chestnut (Aesculus hippocastanum L.), introduced into the steppe zone of Ukraine, has been severely affected by the horse chestnut leaf miner Camereraria ohridella Deschka & Dimič, 1986, which results in damage to the assimilating organs, premature leaf defoliation and, as a consequence, a significant reduction in the reserve substances required for normal life of the plant. In recent studies, the main focus has been placed on the study of the pest’s effects on the non-enzymatic antioxidant protection system of the representatives of the genus Aesculus, while the enzymatic system of horse chestnut protection from the active forms of oxygen under stress is still poorly understood. The purpose of this study was to evaluate the reaction of catalase and two peroxidases of A. hippocastanum leaves, which differ in the level of damage by C. ohridella. The intensity of damage to A. hippocastanum leaves by the horse chestnut leaf miner in the park zones and botanical gardens of Dnipro city was determined, the activity and isoenzyme composition of benzidine-peroxidase, activity of guaiacol-peroxidase and catalase were measured. The lowest average benzidine-peroxidase activity was found in the group of trees with low level of leaf blight and the highest activity – in the group with high level. The opposite dependence was shown by catalase, the activity of which significantly decreases with increasing level of damage inflicted by the phytophage on the chestnut’s assimilating organs. Based on the determination of the variation coefficients, it has been shown that benzidine-peroxidase activity has a higher level of variability than that of catalase and guaiacol-peroxidase. It is established that under the influence of the leaf miner, activity of guaiacol-peroxidase was significantly higher by 87.1% and 75.6%, respectively, for medium and high levels of damage caused to the leaf by this phytophage as compared to that for low levels of damage. The increased level of leaf damage caused by the phytophage is reflected in the change in the isozyme profile of benzidine-peroxidase. The high activity of benzidine-peroxidase in the leaves of A. hippocastanum is due to the presence of several molecular forms that exhibit maximum activity in the narrow pH range (4.15–4.69). Quantitative redistribution of activity between the different molecular forms of benzidine peroxidase can be considered as the main regularity of changes in the expression of benzidine-peroxidase caused by different levels of leaf damage. The results showed that only one benzidine-peroxidase isoform with an isoelectric point of 4.15 shows a significant increase in activity (on average by 2.1 times) in A. hippocastanum leaves with medium and high levels of damage by C. ohridella. Significant reduction in activity is reported for dominant isoperoxidase with an isoelectric point of 4.25 revealing medium pest damage, and for high damage only a decreasing tendency is shown. The data obtained show that horse chestnut trees can specifically respond to mechanical damage by C. ohridella to leaves due to the changes in the activity of individual molecular forms of peroxidase. Further studies of oxidative metabolism are needed to understand the formation of resistance of representatives of the Aesculus genus to damage caused by this moth species based on a wider range of redox enzymes.References
Apers, S., Naessens, T., Pieters, L., & Vlietinck, A. (2006). Densitometric thin-layer chromatographic determination of aescin in a herbal medicinal product containing Aesculus and Vitis dry extracts. Journal of Chromatography A, 1112, 165–170.
Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.
Dowd, D., Lagrimini, L. M., & Hermіs, D. A. (1999). Tobacco anionic peroxidase often increases resistance to insects in different dicotyledonous species. Pesticide Science, 55, 633–634.
Dowd, P. F., Hermis, D. A., Berhow, M. A., & Lagrimini, L. M. (2000). Mechanism of insect resistance in transgenic plants (over) expressing a tobacco anionic peroxidase. Plant Peroxidase Newsletter, 14, 93–101.
Dаbrowska, G., Kata, A., Goc, A., Szechynska-Hebda, M., & Skrzypek, E. (2007). Characteristics of the plant ascorbate peroxidase family. Acta Biologica Cracoviensia: Series Botanica, 49(1), 7–17.
Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196, 143–152.
Gregory, R. P. F. (1966). A rapid assay for peroxidase activity. Biochemical Journal, 101(3), 582–583.
Holoborodko, K. K., Ryabka, K. O., Zaiceva, I. A., & Kondrat’eva, K. V. (2009). Poshyrennya ta suchasnyy stan kashtanovoyi minuyuchoyi moli (Cameraria ohridella Deschka & Dimič, 1986) u m. Dnipropetrovs’k [Distribution and current state of horse-chestnut leaf miner (Cameraria ohridella Deschka & Dimič, 1986) in Dnipropetrovsk]. Problems of Bioindications and Ecology, 14(2), 163–168 (in Ukrainian).
Hryhoryuk, I. P., & Luk’yanenko, T. L. (2015). Fiziolohichni i molekulyarni osnovy stiykosti vydiv roslyn rodu Aesculus L. proty kashtanovoyi minuyuchoyi moli [Physiological and molecular bases of resistance of species of plants of the genus Aesculus L. against horse-chestnut leaf miner]. Komprynt, Kyiv (in Ukrainian).
Kharytonov, M. M., Kroik, A. A., Shupranova, L. V., & Vinnichenko, O. M. (2008). Air pollution assessment related with large industrial city activities. NATO RW: Simulation and assessment of chemical processes in a multiphase environment. Alushta, Ukraine. Pp. 385–393.
Low, P. S., & Merida, J. R. (1996). The oxidative burst in plant defence: Function and signal transduction. Physiologia Plantarum, 96, 533–542.
Pasichnyy, H. V., & Serdyuk, S. M. (2002). Dynamika vazhkykh metaliv v hruntovomu pokryvi u zv’yazku z tekhnohennym zabrudnennyam otochuyuchoho seredovyshcha (na prykladi m. Dnipropetrovska) [Dynamics of heavy metals in the soil cover due to anthropogenic pollution of the environment (for example, Dnipropetrovsk)]. Ecology and Nature Management, 4, 111–117 (in Ukrainian).
Penteliuk, O., Likhanov, A., & Hrygoriuk, I. (2016). Dynamika vmistu polifenoliv u lystkakh roslyn hirkokashtana zvychaynoho (Aesculus hippocastanum L.) za umov mekhanichnykh poshkodzhen’ [Dynamics of polyphenols in the leaves of horse-chestnut (Aesculus hippocastanum L.) plants in the condition of mechanical damage]. Bioresursy i Pryrodokorystuvannya, 8, 5–12 (in Ukrainian).
Ranieri, A., Castagna, A., Baldam, B., & Soldatini, G. F. (2001). Iron deficiency differently affects peroxidase isoforms in sunflower. Journal of Experimental Botany, 52(354), 25–35.
Zerova, M. D., Nikitenko, G. N., Narolsky, N. B., Gershenson, Z. S., Sviridov, S. V., Lukash, O. V., & Babidoritsh, M. M. (2007). Kashtanovaya mynyruyushchaya mol na Ukrayne [Horse-chesttnut leaf miner, Cameraria ohridella, in Ukraine]. Veles, Kiev (in Russian).
Adams, R. P. (1995). Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, Carol Stream.
Anonymous (2011). European Pharmacopoeia, 7th ed. Council of Europe, Strasbourg.
Asghari, B., Salehi, P., Sonboli, A., & Nejad-Ebrahimi, S. (2015). Flavonoids from Salvia chloroleuca with α-amylsae and α-glucosidase inhibitory effect. Iranian Journal of Pharmaceutical Research, 14(2), 609–615.
Jamzad, Z. (2012). Flora of Iran. Vol. 76. Lamiaceae. Research Institute of Forest and Rangelands, Tehran.
Lima, M. E. L., Cordeiro, I., Young, M. C. M., Sobra, M. E. G., & Moreno, P. R. H. (2006). Antimicrobial activity of the essential oil from two specimens of Pimenta pseudocaryophyllus (Gomes) L. R. Landrum (Myrtaceae) native from São Paulo State-Brazil. Pharmacology Online, 3, 589–593.
Mozaffarian, V. (1996). A dictionary of Iranian plant names. Farhang Moaser, Tehran, Iran.
Stace, C. A. (1989). Plant taxonomy and biosystematics. Edward Arnold.
Talebi, S. M., Atri, M., Sheidai, M., Sharifnia, F., & Noormohammadi, Z. (2014). Infraspecific variations in Linum album based on the determination of special stations approach in Iran. Phytologia Balcanica, 20(1), 9–22.
Talebi, S. M., Salahi Isfahani, G., & Azizi, N. (2014). Inter and intrapopulation variations in Stachys inflate Benth. based on phenotype plasticity (an ecological and phytogeographical review). International Research Journal of Biological Sciences, 3(2), 9–20.
Tayarani-Najarana, Z., Asili, J., Aioubi, E., & Emami, S. A. (2013). Growth inhibition and apoptosis induction of Salvia chloroleuca on MCF-7 breast cancer cell line. Iranian Journal of Pharmaceutical Research, 12(4), 789–799.
Zohary, M. (1973). Geobotanical Foundations of the Middle East. Vol. 2. Gustav Fisher Verlag, Stuttgart.