Modeling the spatial variation of urban park ecological properties using remote sensing data

  • O. M. Kunakh Oles Honchar Dnipro National University
  • I. A. Ivanko Oles Honchar Dnipro National University
  • K. K. Holoborodko Oles Honchar Dnipro National University
  • O. I. Lisovets Oles Honchar Dnipro National University
  • A. M. Volkova Oles Honchar Dnipro National University
  • V. V. Nikolaieva Oles Honchar Dnipro National University
  • O. V. Zhukov Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: GIS-technology; human ecology; ecological monitoring; spatial ecology; vegetation indexes; urban ecology


Parks perform a wide range of ecosystem services in urban environments. The functional importance of parks depends on the composition and structure of the tree stand and the specific influence on soil and microclimatic conditions. The article reveals the dependence of soil and microclimatic properties on the structure of the crown space of a park stand. Spectral indices were also shown to be applicable for predicting the spatial variability of soil and climatic properties and indicators of crown space. Soil properties (temperature, moisture, and electrical conductivity in the 5–7 cm layer) and microclimatic parameters (light exposure, air temperature, and atmospheric humidity) were measured in the park plantation using a quasi-regular grid. The canopy structure and gap light transmission indices were extracted from the true-colour fisheye photographs. Thirty species of trees and shrubs were detected in the stand and understory. Robinia pseudoacacia L. was found most frequently (24.5% of all tree records). Acer negundo L. and A. platanoides L. were also frequent (12.4% and 15.5%, respectively). The first four principal components, whose eigenvalues exceeded unity, were extracted by the principal components analysis of the variability of ecological properties and vegetation indices. The principal component 1 explained 50.5% of the variation of the traits and positively correlated with the spectral vegetation indices. The principal component 1 reflected the variability of tree cover densities due to the edaphic trophicity. The principal component 2 described 13% of the variation in the feature space. This component correlated positively with the spectral indices. The principal component 2 was interpreted as a trend of vegetation cover variability induced by moisture variation. The principal component 3 described 8.6% of trait variation. It was most strongly correlated with the atmospheric humidity. An increase in atmospheric humidity was associated with an increase in the soil moisture and electrical conductivity and a decrease in the soil and atmospheric temperature. The principal component 4 described 7.5 % of the variation of traits. An increase in the values of principal component 4 was associated with an increase in the soil moisture and electrical conductivity and atmospheric moisture and was associated with a decrease in the soil and atmospheric temperature. The combinations of the trophotope and hygrotope create the optimal conditions for specific tree species, which is a condition for achieving the maximization of ecosystem services. The mineral nutrition conditions of plants and soil moisture exhibit spatial patterns that allow them to be considered in the design and management of park plantations. The ecological indices measured in the field were shown to be predicted using the vegetation indices. Multiple regression models were able to explain 11–61% of indicator variation. The regression relationships between markers of soil and microclimatic conditions and vegetation predictors are important for monitoring the condition of park plantations and evaluating the performance of park plantation management tools.


Alasmary, Z., Todd, T., Hettiarachchi, G. M., Stefanovska, T., Pidlisnyuk, V., Roozeboom, K., Erickson, L., Davis, L., & Zhukov, O. (2020). Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy, 10(11), 1727.

Aldous, D. E. (2007). Social, environmental, economic, and health benefits of green spaces. Acta Horticulturae, 762, 171–186.

Amani-Beni, M., Zhang, B., Xie, G.-D., & Odgaard, A. J. (2021). Impacts of the microclimate of a large urban park on its surrounding built environment in the summertime. Remote Sensing, 13(22), 4703.

Aram, F., Higueras García, E., Solgi, E., & Mansournia, S. (2019). Urban green space cooling effect in cities. Heliyon, 5(4), e01339.

Badach, J., Dymnicka, M., & Baranowski, A. (2020). Urban vegetation in air quality management: A review and policy framework. Sustainability, 12(3), 1258.

Bahriny, F., & Bell, S. (2020). Patterns of urban park use and their relationship to factors of quality: A case study of Tehran, Iran. Sustainability, 12(4), 1560.

Baranoski, B., Khromykh, N., Karmyzova, L., Ivanko, I., & Lykholat, Y. (2016). Analysis of the alien flora of Dnipropetrovsk Province. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 419–429.

Bazrkar, M. H., Zamani, N., Eslamian, S., Eslamian, A., & Dehghan, Z. (2015). Urbanization and climate change. In: Walter, L. F. (Ed.). Handbook of climate change adaptation. Springer, Berlin, Heidelberg. Pp. 619–655.

Belgard, A. L. (1950). Lesnaja rastitel’nost’ jugo-vostoka USSR [Forest vegetation of South-East part of the USSR]. Kiev State University, Kiev (in Russian).

Belgard, A. L. (1971). Stepnoe lesovedenie [Steppe forestry]. Forestry Industry, Moscow (in Russian).

Bianchi, S., Cahalan, C., Hale, S., & Gibbons, J. M. (2017). Rapid assessment of forest canopy and light regime using smartphone hemispherical photography. Ecology and Evolution, 7(24), 10556–10566.

Blank, L., & Carmel, Y. (2012). Woody vegetation patch types affect herbaceous species richness and composition in a Mediterranean ecosystem. Community Ecology, 13(1), 72–81.

Brown, R. D., Vanos, J., Kenny, N., & Lenzholzer, S. (2015). Designing urban parks that ameliorate the effects of climate change. Landscape and Urban Planning, 138, 118–131.

Brygadyrenko, V. V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102.

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.

Chandrasekar, K., Sesha Sai, M. V. R., Roy, P. S., & Dwevedi, R. S. (2010). Land surface water index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. International Journal of Remote Sensing, 31(15), 3987–4005.

Chen, W., Huang, H., Dong, J., Zhang, Y., Tian, Y., & Yang, Z. (2018). Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 436–452.

Cheung, P. K., Jim, C. Y., & Siu, C. T. (2021). Effects of urban park design features on summer air temperature and humidity in compact-city milieu. Applied Geography, 129, 102439.

Chiesura, A. (2004). The role of urban parks for the sustainable city. Landscape and Urban Planning, 68(1), 129–138.

Ćwik, A., Kasprzyk, I., Wójcik, T., Borycka, K., & Cariñanos, P. (2018). Attractiveness of urban parks for visitors versus their potential allergenic hazard: A case study in Rzeszów, Poland. Urban Forestry and Urban Greening, 35, 221–229.

Dallimer, M., Irvine, K. N., Skinner, A. M. J., Davies, Z. G., Rouquette, J. R., Maltby, L. L., Warren, P. H., Armsworth, P. R., & Gaston, K. J. (2012). Biodiversity and the feel-good factor: Understanding associations between self-reported human well-being and species richness. BioScience, 62(1), 47–55.

Dash, J., & Curran, P. J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25(23), 5403–5413.

De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297.

Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081.

Fares, S., Conte, A., Alivernini, A., Chianucci, F., Grotti, M., Zappitelli, I., Petrella, F., & Corona, P. (2020). Testing removal of carbon dioxide, ozone, and atmospheric particles by urban parks in Italy. Environmental Science and Technology, 54(23), 14910–14922.

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49(1), 77–83.

Holoborodko, K. K., Seliutina, O. V., Ivanko, I. A., Alexeyeva, A. A., Shulman, M. V., & Pakhomov, O. Y. (2021). Effect of Cameraria ohridella feeding on Aesculus hippocastanum photosynthesis. Regulatory Mechanisms in Biosystems, 12(2), 346–352.

Holoborodko, K., Seliutina, O., Alexeyeva, A., Brygadyrenko, V., Ivanko, I., Shulman, M., Pakhomov, O., Loza, I., Sytnyk, S., Lovynska, V., Grytsan, Y., & Bandura, L. (2022). The impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the state of Aesculus hippocastanum photosynthetic apparatus in the urban environment. International Journal of Plant Biology, 13(3), 223–234.

Hulley, M. E. (2012). The urban heat island effect: Causes and potential solutions. In: Zeman, F. (Ed.). Metropolitan sustainability. Elsevier. Pp. 79–98.

Ivanko, I. A., & Kulik, A. F. (2021). Assessment of adaptive capacity of native and adventive species of woody plants in Dnipropetrovsk Region. Issues of Steppe Forest Science and Forest Land Reclamation, 50, 12–21.

Jurgens, C. (1997). The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing, 18(17), 3583–3594.

Kebbas, S., Benseddik, T., Makhlouf, H., & Aid, F. (2018). Physiological and biochemical behaviour of Gleditsia triacanthos L. young seedlings under drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 585–592.

Kim, H., Lee, D.-K., & Sung, S. (2016). Effect of urban green spaces and flooded area type on flooding probability. Sustainability, 8(2), 134.

Koshelev, O., Koshelev, V., Fedushko, M., & Zhukov, O. (2021). Annual course of temperature and precipitation as proximal predictors of birds’ responses to climatic changes on the species and community level. Folia Oecologica, 48(2), 118–135.

Kousis, I., Pigliautile, I., & Pisello, A. L. (2021). Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Scientific Reports, 11(1), 9732.

Kowarik, I., Fischer, L. K., & Kendal, D. (2020). Biodiversity conservation and sustainable urban development. Sustainability, 12(12), 4964.

Kulish, T. (2022). Spatial variation of soil temperature fields in a urban park. IOP Conference Series: Earth and Environmental Science, 1049(1), 012056.

Kunakh, O., Zhukova, Y., Yakovenko, V., & Daniuk, O. (2022). Influence of plants on the spatial variability of soil penetration resistance. Ekológia (Bratislava), 41(2), 113–125.

Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A review of urban microclimate research based on CiteSpace and VOSviewer analysis. International Journal of Environmental Research and Public Health, 19(8), 4741.

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, e00064.

Liang, H., Xue, Y., Li, Z., Wang, S., Wu, X., Gao, G., Liu, G., & Fu, B. (2018). Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. Forest Ecology and Management, 412, 62–69.

Liang, L., Wang, Z., & Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of Cleaner Production, 237, 117649.

Lindemann-Matthies, P., Junge, X., & Matthies, D. (2010). The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biological Conservation, 143(1), 195–202.

Lomas, K. J., & Porritt, S. M. (2017). Overheating in buildings: Lessons from research. Building Research and Information, 45(1–2), 1–18.

Matteson, K. C., Grace, J. B., & Minor, E. S. (2013). Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape. Oikos, 122(5), 682–694.

Mazur, P., Gozdowski, D., & Wójcik-Gront, E. (2022). Soil electrical conductivity and satellite-derived vegetation indices for evaluation of phosphorus, potassium and magnesium content, pH, and delineation of within-field management zones. Agriculture, 12(6), 883.

Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C., & Pinho, P. (2018). Ecosystem services: Urban parks under a magnifying glass. Environmental Research, 160, 469–478.

Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345–362.

Mitchell, R., & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. The Lancet, 372(9650), 1655–1660.

Motazedian, A., Coutts, A. M., & Tapper, N. J. (2020). The microclimatic interaction of a small urban park in Central Melbourne with its surrounding urban environment during heat events. Urban Forestry and Urban Greening, 52, 126688.

Müller, N., Ignatieva, M., Nilon, C. H., Werner, P., & Zipperer, W. C. (2013). Patterns and trends in urban biodiversity and landscape design. In: Elmqvist, T. (Ed.). Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Springer Netherlands. Pp. 123–174.

Nady, R. (2016). Towards effective and sustainable urban parks in Alexandria. Procedia Environmental Sciences, 34, 474–489.

Nowak, D., Hoehn, R., & Crane, D. (2007). Oxygen production by urban trees in the United States. Arboriculture and Urban Forestry, 33(3), 220–226.

Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186–2194.

Palliwoda, J., Kowarik, I., & von der Lippe, M. (2017). Human-biodiversity interactions in urban parks: The species level matters. Landscape and Urban Planning, 157, 394–406.

Pennisi, B. V., & van Iersel, M. (2002). 3 ways to measure medium EC. GMPro, 22(1), 46–48.

Pidlisnyuk, V., Shapoval, P., Zgorelec, Ž., Stefanovska, T., & Zhukov, O. (2020). Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environmental Science and Pollution Research, 27(25), 31446–31457.

Ponomarenko, O., Banik, M., & Zhukov, O. (2021). Assessing habitat suitability for the common pochard, Aythya ferina (Anseriformes, Anatidae) at different spatial scales in Orel’ River Valley, Ukraine. Ekológia (Bratislava), 40(2), 154–162.

Putchkov, A. V., Brygadyrenko, V. V., & Markina, T. Y. (2019). Ground beetles of the tribe Carabini (Coleoptera, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii, 53(1), 3–12.

Rahmonov, O., Skreczko, S., & Rahmonov, M. (2021). Changes in soil features and phytomass during vegetation succession in sandy areas. Land, 10(3), 265.

Rehan, R. M. (2016). Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC Journal, 12(2), 191–204.

Ren, Z., He, X., Zheng, H., Zhang, D., Yu, X., Shen, G., & Guo, R. (2013). Estimation of the relationship between urban park characteristics and park cool island intensity by remote sensing data and field measurement. Forests, 4(4), 868–886.

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Goddard Space Flight Center 3d ERTS-1 Symposium, 1(A), 309–317.

Seymour, V. (2016). The human – nature relationship and its impact on health: A critical review. Frontiers in Public Health, 4, 00260.

Shahtahmassebi, A. R., Li, C., Fan, Y., Wu, Y., Lin, Y., Gan, M., Wang, K., Malik, A., & Blackburn, G. A. (2021). Remote sensing of urban green spaces: A review. Urban Forestry and Urban Greening, 57, 126946.

Shanahan, D. F., Lin, B. B., Gaston, K. J., Bush, R., & Fuller, R. A. (2015). What is the role of trees and remnant vegetation in attracting people to urban parks? Landscape Ecology, 30(1), 153–165.

Shvidenko, A., Buksha, I., Krakovska, S., & Lakyda, P. (2017). Vulnerability of Ukrainian forests to climate change. Sustainability, 9(7), 1152.

Šír, M., Lichner, Ľ., Tesař, M., Hallett, P. D., & Martinková, M. (2009). Simulation of phytomass productivity based on the optimum temperature for plant growth in a cold climate. Biologia, 64(3), 615–619.

Solonenko, A. M., Podorozhniy, S. M., Bren, O. G., Siruk, I. M., & Zhukov, O. V. (2021). Effect of stand density and diversity on the tree ratio of height to diameter relationship in the park stands of Southern Ukraine. Ecologia Balkanica, 13(2), 173–197.

Stenberg, P., Linder, S., Smolander, H., & Flower-Ellis, J. (1994). Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. Tree Physiology, 14, 981–995.

Sun, Y., Gao, C., Li, J., Gao, M., & Ma, R. (2021). Assessing the cooling efficiency of urban parks using data envelopment analysis and remote sensing data. Theoretical and Applied Climatology, 145, 903–916.

Suthari, S., Singh, S., & Raju, V. S. (2020). An assessment of the aboveground phytomass and carbon levels of the forests of Northern Telangana, India, using a geospatial technique. Biodiversity, 21(4), 227–237.

Sytnyk, S. A. (2019). Phytomass of the crown component of robinite forests in the Northern Steppe of Ukraine. Agrology, 2(3), 139–145.

Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178.

Umerova, А., Zhukov, O., & Yorkina, N. (2022). The soil aggregate structure as a marker of the ecological niche of the micromollusc Vallonia pulchella. Journal of Water and Land Development, 52, 66–74.

Visotsky, G. N. (1960). O gidrologicheskom znachenii lesov Rossii [About hydroclimatic value of the forest for the Russia]. Nauka, Moscow (in Russian).

Welles, J. M., & Norman, J. M. (1991). Instrument for indirect measurement of canopy architecture. Agronomy Journal, 83(5), 818–825.

Xiao, C., Li, P., & Feng, Z. (2019). Monitoring annual dynamics of mature rubber plantations in Xishuangbanna during 1987-2018 using Landsat time series data: A multiple normalization approach. International Journal of Applied Earth Observation and Geoinformation, 77, 30–41.

Xie, Q., Dash, J., Huang, W., Peng, D., Qin, Q., Mortimer, H., Casa, R., Pignatti, S., Laneve, G., Pascucci, S., Dong, Y., & Ye, H. (2018). Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1482–1493.

Yakovenko, V., & Zhukov, O. (2021). Zoogenic structure aggregation in steppe and forest soils. In: Dmytruk, Y., & Dent, D. (Eds.). Soils under stress. Springer International Publishing. Pp. 111–127.

Yorkina, N. V. (2016). Impact of technogenic pollution of urban environment on vitality indicators of urban biota (mollusk fauna, soil mesofauna, epiphytic lichens). Moscow University Biological Sciences Bulletin, 71(3), 177–183.

Yorkina, N. V., Teluk, P., Umerova, A., Budakova, V. S., Zhaley, O. A., Ivanchenko, K. O., & Zhukov, O. V. (2021). Assessment of the recreational transformation of the grass cover of public green spaces. Agrology, 4(1), 10‒20.

Yorkina, N., Goncharenko, I., Lisovets, O., & Zhukov, O. (2022). Assessment of naturalness: The response of social behavior types of plants to anthropogenic impact. Ekológia (Bratislava), 41(2), 135–146.

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekologia Bratislava, 38(1), 1–10.

Zhang, L., Ji, L., & Wylie, B. K. (2011). Response of spectral vegetation indices to soil moisture in grasslands and shrublands. International Journal of Remote Sensing, 32(18), 5267–5286.

Zhou, D., & Chu, L. M. (2012). How would size, age, human disturbance, and vegetation structure affect bird communities of urban parks in different seasons? Journal of Ornithology, 153(4), 1101–1112.

Zhu, W., Sun, J., Yang, C., Liu, M., Xu, X., & Ji, C. (2021). How to measure the urban park cooling island? A perspective of absolute and relative indicators using remote sensing and buffer analysis. Remote Sensing, 13(16), 3154.

Zhukov, A. V., & Shatalin, D. B. (2016). Hygrotop and trophotope of steppe Dnieper biogeocenoses as determinants of β-diversity of earthworm (Lumbricidae) communities. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 188–222.

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., & Ganzha, D. S. (2017). Diversity and phytoindication ability of plant community. Ukrainian Journal of Ecology, 7(4), 81–99.

Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A., & Umerova, A. (2021). Temporal aspect of the terrestrial invertebrate response to moisture dynamic in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40(2), 178–188.

Zimaroeva, А. A., Zhukov, O. V., & Ponomarenko, O. L. (2016). Determining spatial parameters of the ecological niche of Parus major (Passeriformes, Paridae) on the base of remote sensing data. Vestnik Zoologii, 50(3), 251–258.

Zymaroieva, A., Fedoniuk, T., Yorkina, N., Budakova, V., & Melnychuk, T. (2021). Ecomorphic structure transformation of soil macrofauna amid recreational impact. Scientific Horizons, 24(7), 30–45.


Most read articles by the same author(s)

> >>