Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park
Abstract
Recreation is an important cultural ecosystem service and is able to significantly affect soil heterogeneity and vegetation functioning. This study investigated the role of the relief and tree stand density in the apparent soil electrical conductivity variation within an urban park. The most suitable variogram models were assessed to evaluate the autocorrelation of the regression models. The map of the spatial variability of apparent soil electrical conductivity was built on the basis of the most suitable variogram. The experimental polygon was located in the Botanical Garden of Oles Honchar Dnipro National University (Dnipro City, Ukraine). The experimental polygon was formed by a quasi-regular grid of measurement locations located about 30 m apart. The measurements of the apparent electrical conductivity of the soil in situ were made in May 2018 at 163 points. On average, the value of soil apparent electric conductivity within the investigated polygon was 0.55 dSm/m and varied within 0.17–1.10 dSm/m. Such environment predictors as tree stand density, relief altitude, topographic wetness index, and potential of relief to erosion were able to explain 48% of the observed variability of soil electrical conductivity. The relief altitude had the greatest influence on the variation of soil electrical conductivity, which was indicated with the highest values of beta regression coefficients. The most important trend of the electric conductivity variation was due to the influence of relief altitude and this dependence was nonlinear. The smallest values of the soil electrical conductivity were recorded in the highest and in lowest relief positions, and the largest values were detected in the relief slope. Recreational load can also be explained by the geomorphology predictors and tree stand density data. These predictors can explain 32% of the variation of recreational load. The variogram was built both for the soil apparent electrical conductivity dataset and for the residuals of the regression model. As a result of the procedure of the models’ selection on the basis of the AIC we obtained the best estimation of the variogram models parameters for the electrical conductivity and for the regression residuals of the electrical conductivity. The level of recreation was correlated statistically significantly with the apparent soil electrical conductivity. The residuals of regression models in which geomorphological indicators and tree stand density were used as predictors have a higher correlation level than the original variables. The soil electrical conductivity may be a sensitive indicator of the recreation load.References
Abramowitz, M., & Stegun, I. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. 10th Printing. U.S. Department of Commerce, National Bureau of Standards, Washington.
Amrein, D., Rusterholz, H.-P., & Baur, B. (2005). Disturbance of suburban fagus forests by recreational activities: Effects on soil characteristics, above-ground vegetation and seed bank. Applied Vegetation Science, 8(2), 175–182.
Brouwer, R., Brander, L., Kuik, O., Papyrakis, E., & Bateman, I. (2013). A synthesis of approaches to assess and value ecosystem services in the EU in the context of TEEB. University Amsterdam Institute for Environmental Studies.
de Wijs, H. J. (1951). Statistics of ore distribution. Part I. Frequency distribution of assay values. Journal of the Royal Netherlands Geological and Mining Society, New Series, 13, 365–375.
de Wijs, H. J. (1953). Statistics of ore distribution. Part II. Theory of binomial distribution applied to sampling and engineering problems. Journal of the Royal Netherlands. Geological and Mining Society, New Series, 15, 12–24.
Dowman, I. J. (1999). Encoding and validating data from maps and images. Geographical Information Systems. Volume 1. Second Edition. John Wiley & Sons, New York. Pp. 437–450.
Handcock, M. S., & Stein, M. L. (1993). A Bayesian analysis of kriging. Technometrics, 35, 403–410.
Hojati, M., & Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41–52.
Levin, M. J., Kim, K. H. J., Morel, J. L., Burghardt, W., Charzynski, P., & Shaw, R. K. (2017). Soils within cities. Schweizerbart Science Publishers, Stuttgart.
Matern, B. (1986). Spatial variation. Lecture Notes in Statistics. Springer, New York.
Olaya, V., & Conrad, O. (2008). Geomorphometry in SAGA. In: Hengl, T., & Reuter, H. I. (Eds.). Geomorphometry: Concepts, software, applications. Elsevier.
Oral, D., Özcan, M., Gökbulak, F., Efe, A., & Hizal, A. (2013). Response of understory vegetation to exclosure in a heavily compacted forest recreational site. Journal of Environmental Biology, 34, 811–817.
Ribeiro Jr., P. J., & Diggle, P. J. (2016). GeoR: Analysis of geostatistical data. R package version 1.7-5.2.
Ribeiro, P. J., Christensen, O. F., & Diggle, P. J. (2003). Geostatistical software – geoR and geoRglm. DSC 2003 Working Papers.
Stein, M. L. (1999). Interpolation of spatial data: Some theory for kriging. New York, Springer.
Vašát, R., Pavlů, L., Borůvka, L., Drábek, O., & Nikodem, A. (2013). Mapping the topsoil pH and humus quality of forest soils in the North Bohemian Jizerské Hory Mts. region with ordinary, universal, and regression kriging: Cross-validation comparison. Soil and Water Research, 8, 97–104.
Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists. Chichester, John Wiley & Sons.
Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434–449.
Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol Manganese Ore Basin, Ukraine). Ecologica Montenegrina, 17, 29–45.
Zuazo, V. H. D., & Pleguezuelo, C. R. R. (2008). Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development, 28(1), 65–86.