Effects of fires on vascular plant and microalgae communities of steppe ecosystems

  • V. V. Shcherbyna Dmytro Motornyi Tavria State Agrotechnological University
  • I. A. Maltseva Bogdan Khmelnitsky Melitopol State Pedagogical University
  • H. V. Maltseva Bogdan Khmelnitsky Melitopol State Pedagogical University
  • O. V. Zhukov Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: grass height and projected area; abundance and biomass of microalgae and cyanobacteria; bioindication.

Abstract

The article is focused on a hypothesis verification: the higher plants, microalgae and cyanobacteria may be used in bioindication of steppe ecosystem restoration dynamics after fires. On the territory of the Askania Nova biosphere reserve (Ukraine) 4 stationary polygons were investigated: SP1 – steppe area which had not been exposed to fire for 20 years preceding our study, as well as areas where single fires occurred in 2001 (SP2), 2005 (SP3), and a site where fires occurred in 2001 and 2004 (SP4). The investigation revealed the dynamics of height and projected area of the higher vegetation according to seasons during two years (2010 and 2011), as well as abundance and biomass of microalgae and cyanoprokaryotes in the soil layer by the layer of the depth to 15 cm. It was found that the effects of pyrogenic load remain evident for several years after the fires, manifesting in decrease of the height and projected area of herbage, the number and biomass of algae and cyanobacteria in the soil, especially to the depth of 5 cm. Multivariate general linear models were used to test the significance of the dependence of quantitative characteristics of vegetation, microalgae, and cyanoprokaryotes on environmental predictors (season, year, soil layer, and fire). In the model, 75.2% of the grass height variability and 91.6% of the grass projected area variability could be explained by the predictors under consideration. In the series SP1 → SP2 → SP3 → SP4 the grass height and projected area decreased. The differences in the projected area of the grass stand were most evident in spring. The model explained 89.1% of the variation in abundance and 91.6% of the variation in biomass of Bacillariophyceae. The abundance of Bacillariophyceae was greater in the upper soil layer than in the lower layer and decreased with depth. The abundance of this group of algae decreased in the series SP1 → SP2 → SP3 → SP4 at depths of 0–5 and 5–10 cm. Changes in abundances of Chlorophyta, Streptophyta, Heterokontophyta (Xanthophyceae and Eustigmatophyceae) equaling 47.6% could also be explained by the model. The abundance of this group of algae was greatest in the upper soil layer. In the upper soil layer, the maximum abundance of Chlorophyta, Streptophyta, and Heterokontophyta (Xanthophyceae and Eustigmatophyceae) was recorded for Polygon SP1 and the minimum for Polygon SP3. Within the model, 48.0% of the variation in biomass of Chlorophyta, Streptophyta, and Heterokontophyta (Xanthophyceae and Eustigmatophyceae) was explained by the environmental predictors. The biomass trend was coherent with the population trend. A special feature was that there was a significant increase in biomass at 10–15 cm depth at Polygon SP3 compared to other polygons at this depth. The model was able to explain 61.8% of the variation in abundance and 66.7% of the variation in cyanobacteria biomass. The highest abundance of cyanobacteria was found in the upper soil layer of polygon SP1. Somewhat lower numbers of cyanobacteria were at polygons SP2 and SP4, and the lowest were found in the upper soil layer at polygon SP3. In turn, the highest number of cyanobacteria was found particularly at this polygon in the 5–10 cm layer. The biomass in the 0–5 cm layer was coherent with the abundance pattern of this group. The research results confirmed that the quantitative characteristics of the higher vegetation (height and projected area) as well as of microalgae and cyanobacteria (abundance and biomass) may be used in bioindication of the dynamics of post-pyrogenic processes in steppe ecosystems.

References

Aanderud, Z. T., Bahr, J., Robinson, D. M., Belnap, J., Campbell, T. P., Gill, R. A., McMillian, B., & St. Clair, S. (2019). The burning of biocrusts facilitates the emergence of a bare soil community of poorly-connected chemoheterotrophic bacteria with depressed ecosystem services. Frontiers in Ecology and Evolution, 467, 1–14.

Allen, E. B., Steers, R. J., & Dickens, S. J. (2011). Impacts of fire and invasive species on desert soil ecology. Rangeland Ecology and Management, 64(5), 450–462.

Antoninka, A., Bowker, M. A., Chuckran, P., Barger, N. N., Reed, S., & Belnap, J. (2018). Maximizing establishment and survivorship of field-collected and greenhouse-cultivated biocrusts in a semi-cold desert. Plant and Soil, 429, 213–225.

Arabadzhy-Tipenko, L. I. (2020). Ecological and floristic characteristics of Cyanophyceae of Pryazovskyi National Nature Park. Agrology, 3(2), 66‒79.

Aznar, J. M., González-Pérez, J. A., Badía, D., & Martí, C. (2016). At what depth are the properties of a gypseous forest topsoil affected by burning? Land Degradation and Development, 27(5), 1344–1353.

Barger, N. N., Herrick, J. E., Van Zee, J., & Belnap, J. (2006). Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry, 77(2), 247–263.

Bates, J. D., Boyd, C. S., & Davies, K. W. (2020). Longer-term post-fire succession on Wyoming big sagebrush steppe. International Journal of Wildland Fire, 29(3), 229.

Bates, J. D., Davies, K. W., Bournoville, J., Boyd, C., O’Connor, R., & Svejcar, T. J. (2019). Herbaceous biomass response to prescribed fire in juniper-encroached sagebrush steppe. Rangeland Ecology and Management, 72(1), 28–35.

Baumann, K., Jung, P., Samolov, E., Lehnert, L. W., Büdel, B., Karsten, U., Bendix, J., Achilles, S., Schermer, M., Matus, F., Oses, R., Osses, P., Morshedizad, M., Oehlschläger, C., Hu, Y., Klysubun, W., & Leinweber, P. (2018). Biological soil crusts along a climatic gradient in Chile: Richness and imprints of phototrophic microorganisms in phosphorus biogeochemical cycling. Soil Biology and Biochemistry, 127, 286–300.

Belnap, J., & Eldridge, D. (2001). Disturbance and recovery of biological soil crusts. In: Belnap, J., & Lange, O. L. (Eds.). Biological soil crusts: Structure, function, and management. Springer, Berlin, Heidelberg. Pp. 363–383.

Bonham, C. D., & Clark, D. L. (2005). Quantification of plant cover estimates. Grassland Science, 51(2), 129–137.

Bowker, M. A., Belnap, J., Rosentreter, R., & Graham, B. (2004). Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Applied Soil Ecology, 26(1), 41–52.

Brook, A. J. (1980). Thermophilic microorganisms and life at high temperatures. Geoderma, 24(4), 363–364.

Bu, C., Wu, S., Yang, Y., & Zheng, M. (2014). Identification of factors influencing the restoration of Cyanobacteria-dominated biological soil crusts. PLoS One, 9(3), e90049.

Butterbach-Bahl, K., Kögel-Knabner, I., & Han, X. (2011). Steppe ecosystems and climate and land-use changes – vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 340, 1–6.

Castenholz, R. W. (1977). The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park. Microbial Ecology, 3(2), 79–105.

Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., & Domingo, F. (2016). Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology, 9(7), 1208–1221.

Chaurasia, A. (2015). Cyanobacterial biodiversity and associated ecosystem services: Introduction to the special issue. Biodiversity and Conservation, 24(4), 707–710.

Chen, W., Li, J., Zhang, Y., Zhou, F., Koehler, K., LeBlanc, S., Fraser, R., Olthof, I., Zhang, Y., & Wang, J. (2009). Relating biomass and leaf area index to non-destructive measurements in order to monitor changes in arctic vegetation. Arctic, 62(3), 257–369.

Crenshaw, C. L., Lauber, C., Sinsabaugh, R. L., & Stavely, L. K. (2008). Fungal control of nitrous oxide production in semiarid grassland. Biogeochemistry, 87(1), 17–27.

Crittenden, P. D., Llimona, X., & Sancho, L. G. (2007). Lichenized unicellular cyanobacteria fix nitrogen in the light. Canadian Journal of Botany, 85(10), 1003–1006.

Darby, B. J., Neher, D. A., & Belnap, J. (2007). Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Applied Soil Ecology, 35(1), 203–212.

Davies, K. W., & Dean, A. E. (2019). Prescribed summer fire and seeding applied to restore Juniper-encroached and exotic annual grass-invaded sagebrush steppe. Rangeland Ecology and Management, 72(4), 635–639.

Davies, K. W., Rios, R. C., Bates, J. D., Johnson, D. D., Kerby, J., & Boyd, C. S. (2019). To burn or not to burn: Comparing reintroducing fire with cutting an encroaching conifer for conservation of an imperiled shrub‐steppe. Ecology and Evolution, 9(16), 9137–9148.

Davison, I. R., & Pearson, G. A. (1996). Stress tolerance in intertidal seaweeds. Journal of Phycology, 32(2), 197–211.

Davydov, D. (2014). Diversity of the Cyanoprokaryota of the area of settlement Pyramiden, West Spitsbergen Island, Spitsbergen Archipelago. Folia Cryptogamica Estonica, 51, 13.

Davydov, D., & Patova, E. (2018). The diversity of Cyanoprokaryota from freshwater and terrestrial habitats in the Eurasian Arctic and Hypoarctic. Hydrobiologia, 811(1), 119–137.

Dettweiler-Robinson, E., Bakker, J. D., & Grace, J. B. (2013). Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. Journal of Arid Environments, 94, 96–104.

Dor, I., & Danin, A. (1996). Cyanobacterial desert crusts in the Dead Sea Valley, Israel map: 1. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes, 83, 197–206.

Dufford, R. G., Zimmermann, H. J., Cline, L. D., & Ward, J. V. (1987). Responses of epilithic algae to regulation of rocky mountain streams. In: Craig, J. F., & Kemper, J. B. (Eds.). Regulated Streams. Springer US, Boston. Pp. 383–390.

Elloumi, J., Guermazi, W., Ayadi, H., Bouaïn, A., & Aleya, L. (2008). Detection of water and sediments pollution of an arid saltern (Sfax, Tunisia) by coupling the distribution of microorganisms with hydrocarbons. Water, Air, and Soil Pollution, 187, 157–171.

Engene, N., Paul, V. J., Byrum, T., Gerwick, W. H., Thor, A., & Ellisman, M. H. (2013). Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). Journal of Phycology, 49(6), 1095–1106.

Escudero, A., Martínez, I., de la Cruz, A., Otálora, M. A. G., & Maestre, F. T. (2007). Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. Journal of Arid Environments, 70(1), 18–28.

Ettl, H. (1978). Xanthophyceae, 1. Teil. In: Ettl, H., Gerloff, J., & Heynig, H. (Eds.). Süßwasserflora von Mitteleuropa. Band 3(14). VEB Gustav Fischer‐Verlag, Stuttgart, New York.

Ettl, H. (1983). Chlorophyta I (Phytomonadina). In: Ettl, H., Gerloff, J., Heynig, H., & Mollenhauer, D. (Eds.). Süßwasserflora von Mitteleuropa. Band 9. Gustav Fischer Verlag, Stuttgart, New York.

Ettl, H., & Gartner, G. (1988a). Chlorophyta II, Tetrasporales, Chlorococcales, Gloeodendrales. In: Ettl, H., Gerloff, J., & Heynig, H. (Eds.). Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.

Ettl, H., & Gartner, G. (1988b). Tetrasporales, Chlorococcales, Gloeodendrales, Chlorophyta II. In: Ettl, H., Gerloff, J., & Heynig, H. (Eds.). Süswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart.

Ettl, H., & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, Stuttgart.

Ettl, H., & Gartner, G. (2014). Syllabus der Boden-, Luft und Flechtenalgen. 2 Aufl. Springer Spektrum, Berlin, Heidelberg.

Feng, H., & Squires, V. R. (2020). Socio-environmental dynamics of alpine grasslands, steppes and meadows of the Qinghai–Tibetan Plateau, China: A commentary. Applied Sciences, 10(18), 6488.

Fogg, G. E. (1999). The biology of polar habitats. Cambridge The University Press, Cambridge.

Fogg, G. E., Stewart, W. D. P., Fay, P., & Walsby, A. E. (1973). The blue-green algae. Academic Press, London, New York.

Fomina, N. V. (2020). Algomonitoring of chernozem leached in agrocenoses of the forest-steppe of the Krasnoyarsk Territory. IOP Conference Series: Materials Science and Engineering, 919, 062046.

Freitag, M., Kamp, J., Dara, A., Kuemmerle, T., Sidorova, T. V., Stirnemann, I. A., Velbert, F., & Hölzel, N. (2021). Post‐soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe. Global Change Biology, 27(2), 388–401.

Frey, W. (2015). Syllabus of plant families. Adolf Engler’s Syllabus der Pflanzenfamilien. Part 2/1: Photoautotrophic eukaryotic Algae. Schweizerbart Science Publishers, Stuttgart.

Gaysina, L. A., Saraf, A., & Singh, P. (2019). Cyanobacteria in diverse habitats. In: Mishra, A. K., & Tiwari, D. N. (Eds.). Cyanobacteria. Elsevier, New York. Pp. 1–28.

Golubic, S., & Seong-Joo, L. (1999). Early cyanobacterial fossil record: Preservation, palaeoenvironments and identification. European Journal of Phycology, 34(4), 339–348.

Gongalsky, K. B., Malmström, A., Zaitsev, A. S., Shakhab, S. V., Bengtsson, J., & Persson, T. (2012). Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Applied Soil Ecology, 59, 73–86.

Hawkes, C. V. (2004). Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecology, 170(1), 121–134.

Hemlata, & Fatma, T. (2009). Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bulletin of Environmental Contamination and Toxicology, 83(4), 509–515.

Hoffman, L. (1999). Marine cyanobacteria in tropical regions: Diversity and ecology. European Journal of Phycology, 34(4), 371–379.

Holmstrup, M., Costanzo, J. P., & Lee, R. E. (1999). Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. Journal of Comparative Physiology – B Biochemical, Systemic, and Environmental Physiology, 169(3), 207–214.

Jensen, R. K., Rasmussen, J., & Melander, B. (2004). Selectivity of weed harrowing in lupin. Weed Research, 44(4), 245–253.

Jimenez Aguilar, A., Huber-Sannwald, E., Belnap, J., Smart, D. R., & Arredondo Moreno, J. T. (2009). Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability. Journal of Arid Environments, 73(12), 1158–1169.

Johnson, S. L., Neuer, S., & Garcia-Pichel, F. (2007). Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environmental Microbiology, 9(3), 680–689.

Kalinichenko, A., Pisarenko, P., & Kulyk, M. (2018). Algae in urban water bodies – control of growth and use as a biomass. E3S Web of Conferences, 45, 00028.

Kang, L., Han, X., Zhang, Z., & Sun, O. J. (2007). Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1482), 997–1008.

Kezlya, E., Glushchenko, A., Maltsev, Y., Gusev, E., Genkal, S., Kuznetsov, A., Kociolek, J. P., & Kulikovskiy, M. (2020). Placoneis cattiensis sp. nov. – a new, diatom (Bacillariophyceae: Cymbellales) soil species from Cát Tiên National Park (Vietnam). Phytotaxa, 460(4), 237–248.

Koffi, K., Philippe, K., Kouassi, A. M., Maryse, A. N., Kamanzi, K., & Ama, A. (2009). Seasonal distribution of phytoplankton in Grand-Lahou Lagoon (Côte d’Ivoire). European Journal of Scientific Research, 26, 329–341.

Komárek, J. (2013). Cyanoprokaryota. Part 3, Heterocytous Genera. Springer Spectrum, Heidelberg.

Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota. Part 2, Oscillatoriales. Springer Spektrum, Heidelberg.

Korotchenko, I., & Peregrym, M. (2012). Ukrainian steppes in the past, at present and in the future. In: Werger, M. J. A. & van Staalduinen, M. A. (Eds.). Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht. Pp. 173–196.

Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 2/1. Naviculaceae. In: Ettl, H., Gerloff, J., Heynig, H., & Mollenhauer, D. (Eds.). Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.

Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2/2. Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl, H., Gerloff, J., Heynig, H., & Mollenhauer, D. (Eds.). Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, New York.

Krebs, C. J., Danell, K., Angerbjörn, A., Agrell, J., Berteaux, D., Bråthen, K. A., Danell, Ö., Erlinge, S., Fedorov, V., Fredga, K., Hjältén, J., Högstedt, G., Jónsdóttir, I. S., Kenney, A. J., Kjellén, N., Nordin, T., Roininen, H., Svensson, M., Tannerfeldt, M., & Wiklund, C. (2003). Terrestrial trophic dynamics in the Canadian Arctic. Canadian Journal of Zoology, 81(5), 827–843.

8

Kulikovskiy, M. S., Maltsev, Y. I., Glushchenko, A. M., Gusev, E. S., Kapustin, D. A., Kuznetsova, I. V., Frolova, L., & Kociolek, J. P. (2020). Preliminary molecular phylogeny of the diatom genus Nupela with the description of a new species and consideration of the interrelationships of taxa in the suborder Neidiineae D.G. Mann sensu E.J. Cox. Fottea, 20(2), 192–204.

Kulikovskiy, M., Kapustin, D., Glushchenko, A., Sidelev, S., Maltsev, Y., Gusev, E., Kezlya, E., Shkurina, N., Kuznetsova, I., & Kociolek, P. (2020). Morphological and molecular investigation of Gomphonema longissimum and related taxa from Malili lakes (Indonesia) with comments on diatom evolution in ancient lakes. European Journal of Phycology, 55(2), 147–161.

Kulikovskiy, M., Maltsev, Y., Glushchenko, A., Kuznetsova, I., Kapustin, D., Gusev, E., Lange‐Bertalot, H., Genkal, S., & Kociolek, J. P. (2020). Gogorevia, a new monoraphid diatom genus for Achnanthes exigua and allied taxa (Achnanthidiaceae) described on the basis of an integrated molecular and morphological approach. Journal of Phycology, 56(6), 1601–1613.

Laamanen, M. (1996). Cyanoprokaryotes in the Baltic Sea ice and winter plankton. Algological Studies/Archiv Für Hydrobiologie, Supplement Volumes, 83, 423–433.

Lababpour, A. (2016). Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. International Journal of Environmental Science and Technology, 13(10), 2521–2532.

Lachashvili, N. J., Khachidze, M. N., Eradze, N. V., & Khetsuriani, L. D. (2017). Steppe of Tbilisi environs (East Georgia, South Caucasus). Annals of Agrarian Science, 15(3), 332–338.

Langhans, T. M., Storm, C., & Schwabe, A. (2009). Biological soil crusts and their microenvironment: Impact on emergence, survival and establishment of seedlings. Flora – Morphology, Distribution, Functional Ecology of Plants, 204(2), 157–168.

Leßmeister, A., Bernhardt‐Römermann, M., Schumann, K., Thiombiano, A., Wittig, R., & Hahn, K. (2019). Vegetation changes over the past two decades in a West African savanna ecosystem. Applied Vegetation Science, 22(2), 230–242.

Liu, Q., Glushchenko, A., Kulikovskiy, M., Maltsev, Y., & Kociolek, J. P. (2019). New Hannaea patrick (Fragilariaceae, Bacillariophyta) species from Asia, with comments on the biogeography of the genus. Cryptogamie, Algologie, 40(5), 41.

Liu, W., Xu, W., Hong, J., & Wan, S. (2010). Interannual variability of soil microbial biomass and respiration in responses to topography, annual burning and N addition in a semiarid temperate steppe. Geoderma, 158(3–4), 259–267.

Liu, X., Hou, W., Dong, H., Wang, S., Jiang, H., Wu, G., Yang, J., & Li, G. (2016). Distribution and diversity of Cyanobacteria and eukaryotic algae in Qinghai–Tibetan lakes. Geomicrobiology Journal, 33(10), 860–869.

López-Flores, R., Boix, D., Badosa, A., Brucet, S., & Quintana, X. D. (2006). Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Marine Biology, 149(6), 1313–1324.

Maar, M., Nielsen, T. G., Richardson, K., Christaki, U., Hansen, O. S., Zervoudaki, S., & Christou, E. D. (2002). Spatial and temporal variability of food web structure during the spring bloom in the Skagerrak. Marine Ecology Progress Series, 239, 11–29.

Maestre, F. T., Huesca, M., Zaady, E., Bautista, S., & Cortina, J. (2002). Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biology and Biochemistry, 34(6), 895–898.

Mager, D. M., & Thomas, A. D. (2011). Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. Journal of Arid Environments, 75(2), 91–97.

Mallin, M. A., & Paerl, H. W. (1994). Planktonic trophic transfer in an estuary: Seasonal, diel, and community structure effects. Ecology, 75(8), 2168–2184.

Maltsev, Y. I., Maltseva, I. A., Maltseva, S. Y., & Kulikovskiy, M. S. (2020). Biotechnological potential of a new strain of Bracteacoccus bullatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids. Russian Journal of Plant Physiology, 67(1), 185–193.

Maltsev, Y., & Maltseva, I. (2018). The influence of forest-forming tree species on diversity and spatial distribution of algae in forest litter. Folia Oecologica, 45(2), 72–81.

Maltsev, Y., Maltseva, I., Maltseva, S., Kociolek, J. P., & Kulikovskiy, M. (2021a). A new species of freshwater algae Nephrochlamys yushanlensis sp. nov. (Selenastraceae, Sphaeropleales) and its lipid accumulation during nitrogen and phosphorus starvation. Journal of Phycology, 57(2), 606–618.

Maltsev, Y., Maltseva, S., Kociolek, J. P., Jahn, R., & Kulikovskiy, M. (2021b). Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data. Scientific Reports, 11, 4266.

Maltseva, I. A., & Maltsev, Y. I. (2021). Diversity of cyanobacteria and algae in dependence to forest-forming tree species and properties rocks of dump. International Journal of Environmental Science and Technology, 18(3), 545–560.

Maltseva, I. A., Maltsev, Y. I., & Solonenko, A. N. (2017). Soil algae of the oak groves of the steppe zone of Ukraine. International Journal on Algae, 19(3), 215–226.

Mamaeva, A., Namsaraev, Z., Maltsev, Y., Gusev, E., Kulikovskiy, M., Petrushkina, M., Filimonova, A., Sorokin, B., Zotko, N., Vinokurov, V., Kopitsyn, D., Petrova, D., Novikov, A., & Kuzmin, D. (2018). Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations. Journal of Applied Phycology, 30(4), 2237–2246.

Mata-González, R., Reed-Dustin, C. M., & Rodhouse, T. J. (2018). Contrasting effects of long-term fire on sagebrush steppe shrubs mediated by topography and plant community. Rangeland Ecology and Management, 71(3), 336–344.

McGregor, G. B., Fabbro, L. D., & Lobegeiger, J. S. (2007). Freshwater planktic Chroococcales (Cyanoprokaryota) from North-Eastern Australia: A morphological evaluation. Nova Hedwigia, 84(3), 299–331.

McLendon, T., & Redente, E. F. (1992). Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semiarid sagebrush site. Oecologia, 91(3), 312–317.

Muñoz-Rojas, M., Lewandrowski, W., Erickson, T. E., Dixon, K. W., & Merritt, D. J. (2016). Soil respiration dynamics in fire affected semi-arid ecosystems: Effects of vegetation type and environmental factors. Science of The Total Environment, 572, 1385–1394.

Mutalipassi, M., Mazzella, V., Romano, G., Ruocco, N., Costantini, M., Glaviano, F., & Zupo, V. (2019). Growth and toxicity of Halomicronema metazoicum (Cyanoprokaryota, Cyanophyta) at different conditions of light, salinity and temperature. Biology Open, 8(10), bio043604.

Myers, P. E., & Davis, J. S. (2003). Recolonization of soils by algae in a northcentral Florida pine forest after controlled fire and soil sterilization. Nova Hedwigia, 76(1), 207–219.

Nouwakpo, S. K., Williams, C. J., Pierson, F. B., Weltz, M. A., Kormos, P. R., Arslan, A., & Al-Hamdan, O. Z. (2020). Effectiveness of prescribed fire to re-establish sagebrush steppe vegetation and ecohydrologic function on woodland-encroached sagebrush rangelands, Great Basin, USA: Part II: Runoff and sediment transport at the patch scale. Catena, 185, 104301.

Okello, W., Portmann, C., Erhard, M., Gademann, K., & Kurmayer, R. (2009). Occurrence of microcystin-producing cyanobacteria in Ugandan freshwater habitats. Environmental Toxicology, 25(4), 367–380.

Okhapkin, A. G. (2015). The composition of Cyanoprokaryota in the plankton of Cheboksary reservoir (Nizhnii Novgorod, Russia). Algologia, 25(3), 265–277.

Olmstead, M. A., Wample, R., Greene, S., & Tarara, J. (2004). Nondestructive measurement of vegetative cover using digital image analysis. HortScience, 39(1), 55–59.

Ortega-Mayagoitia, E., Rojo, C., & Rodrigo, M. A. (2003). Controlling factors of phytoplankton assemblages in wetlands: An experimental approach. Hydrobiologia, 502, 177–186.

Pełechata, A., Pełechaty, M., & Pukacz, A. (2016). Factors influencing cyanobacteria community structure in Chara-lakes. Ecological Indicators, 71, 477–490.

Pinckney, J. L., Paerl, H. W., Harrington, M. B., & Howe, K. E. (1998). Annual cycles of phytoplankton community-structure and bloom dynamics in the Neuse River Estuary, North Carolina. Marine Biology, 131(2), 371–381.

Pointing, S. B., & Belnap, J. (2012). Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8), 551–562.

Prasse, R., & Bornkamm, R. (2000). Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology, 150, 65–75.

Rai, A. N. (Ed.). (2018). CRC Handbook of symbiotic cyanobacteria. CRC Press.

Rampelotto,P.H. (2013).Extremophiles and extreme environments. Life,3(3),482–485.

Rasmussen, I. A. (2004). The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Research, 44(1), 12–20.

Reed-Dustin, C. M., Mata-González, R., & Rodhouse, T. J. (2016). Long-term fire effects on native and invasive grasses in protected area sagebrush steppe. Rangeland Ecology and Management, 69(4), 257–264.

Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge University, Cambridge.

Richardson, K., Nielsen, T. G., Pedersen, F. B., Heilmann, J. P., Løkkegaard, B., & Kaas, H. (1998). Spatial heterogeneity in the structure of the planktonic food web in the North Sea. Marine Ecology Progress Series, 168, 197–211.

Rivera-Aguilar, V., Godínez-Alvarez, H., Manuell-Cacheux, I., & Rodríguez-Zaragoza, S. (2005). Physical effects of biological soil crusts on seed germination of two desert plants under laboratory conditions. Journal of Arid Environments, 63(1), 344–352.

Rodriguez-Caballero, E., Belnap, J., Büdel, B., Crutzen, P. J., Andreae, M. O., Pöschl, U., & Weber, B. (2018). Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 11(3), 185–189.

Samolov, E., Baumann, K., Büdel, B., Jung, P., Leinweber, P., Mikhailyuk, T., Karsten, U., & Glaser, K. (2020). Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach. Microorganisms, 8(7), 1047.

Savadogo, P., Diawara, S., Dayamba, S. D., Sawadogo, L., & Nacro, H. B. (2017). Limited long-term effects of moderate livestock grazing and prescribed early fire on soil and root processes in Sudanian savanna-woodlands, West Africa. Geoderma, 306, 18–27.

Seger, C. D., Batista, A. C., Tetto, A. F., & Soares, R. V. (2014). Fire behavior of prescribed burns in grass: Woody steppe on Paraná State, Brazil. In: Advances in forest fire research. Imprensa da Universidade de Coimbra. Pp. 234–243.

Shcherbyna, V. V., Maltseva, I. A., Maltsev, Y. I., & Solonenko, A. N. (2017). Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regulatory Mechanisms in Biosystems, 25(4), 633–638.

Shekhovtseva, O. G., & Mal’tseva, I. A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400.

Siebert, F., Klem, J., & Van Coller, H. (2020). Forb community responses to an extensive drought in two contrasting land-use types of a semi-arid Lowveld savanna. African Journal of Range and Forage Science, 37(1), 53–64.

Sinetova, M. A., & Los, D. A. (2016). New insights in cyanobacterial cold stress responses: Genes, sensors, and molecular triggers. Biochimica et Biophysica Acta – General Subjects, 1860(11), 2391–2403.

Smelansky, I. E., & Tishkov, A. A. (2012). The steppe biome in Russia: Ecosystem services, conservation status, and actual challenges. In: Werger, M. & van Staalduinen, M. (Eds.). Eurasian steppes. Ecological problems and livelihoods in a changing world. Plant and Vegetation. Springer, Dordrecht. Pp. 45–101.

Soares, M. C. S., Lürling, M., & Huszar, V. L. M. (2013). Growth and temperature-related phenotypic plasticity in the cyanobacterium Cylindrospermopsis raciborskii. Phycological Research, 61(1), 61–67.

Stal, L. J. (2012). Cyanobacterial mats and stromatolites. In: Ecology of Cyanobacteria II: Their diversity in space and time. Springer Netherlands. Pp. 65–125.

Stavi, I. (2019). Wildfires in grasslands and shrublands: A review of impacts on vegetation, soil, hydrology, and geomorphology. Water, 11(5), 1042.

Streďanský, J., Lackóoá, L., Streďanská, A., & Varga, V. (2015). Determination of soil endangerment by wind erosion with consideration of legislative changes in acceptable soil loss. Ekologia, 34(1), 1–6.

Tang, S., Zhang, Y., Zhai, X., Wilkes, A., Wang, C., & Wang, K. (2018). Effect of grazing on methane uptake from Eurasian steppe of China. BMC Ecology, 18(1), 11.

Tucker, C., Antoninka, A., Day, N., Poff, B., & Reed, S. (2020). Biological soil crust salvage for dryland restoration: An opportunity for natural resource restoration. Restoration Ecology, 28(S2), S9–S16.

Ward, D. M., & Castenholz, R. W. (2006). Cyanobacteria in geothermal habitats. In: Whitton, B. (Ed.). The ecology of cyanobacteria. Springer, Dordrecht. Pp. 37–59.

Warren, S. D., Rosentreter, R., & Pietrasiak, N. (2020). Biological soil crusts of the Great Plains: A review. Rangeland Ecology and Management, in press.

Warren, S. D., St. Clair, L. L., Johansen, J. R., Kugrens, P., Baggett, L. S., & Bird, B. J. (2015). Biological soil crust response to late season prescribed fire in a Great basin juniper woodland. Rangeland Ecology and Management, 68(3), 241–247.

Wesche, K., Ambarlı, D., Kamp, J., Török, P., Treiber, J., & Dengler, J. (2016). The Palaearctic steppe biome: A new synthesis. Biodiversity and Conservation, 25(12), 2197–2231.

Whitton, B. A., & Potts, M. (2006). Introduction to the cyanobacteria. In: Whitton, B. A., & Potts, M. (Eds.). The ecology of cyanobacteria. Springer, Dordrecht. Pp. 1–11.

Zaitsev, A. S., Gongalsky, K. B., Persson, T., & Bengtsson, J. (2014). Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Applied Soil Ecology, 83, 101–108.

Zakhia, F., Jungblut, A. D., Taton, A., Vincent, W. F., & Wilmotte, A. (2008). Cyanobacteria in cold ecosystems. In: Psychrophiles: From biodiversity to biotechnology. Springer, Berlin, Heidelberg. Pp. 121–135.

Zedler, P. H. (2007). Fire effects on grasslands. In: Plant disturbance ecology. Elsevier. Pp. 397–439.

Zerbo, I., Bernhardt-Römermann, M., Ouédraogo, O., Hahn, K., & Thiombiano, A. (2016). Effects of climate and land use on herbaceous species richness and vegetation composition in West African savanna ecosystems. Journal of Botany, 2016, 1–11.

Zhang, Y. M., Wang, H. L., Wang, X. Q., Yang, W. K., & Zhang, D. Y. (2006). The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma, 132, 441–449.

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., & Novikova, V. O. (2018). The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45(1), 8–23.

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., Fedushko, M. P., Kotsun, V. I., Zhukova, Y. O., & Potapenko, O. V. (2019). Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114.

Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y., & Ganzha, D. (2019). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekologia Bratislava, 38(3), 253–272.

Zhukov, О. V., Kovalenko, D. V., & Maslykova, K. P. (2019). Physiognomic vegetation types and their identification by using the decryption of digital images. Agrology, 2(2), 94–99.

Published
2021-02-12
Section
Articles