Impact of recreational transformation of soil physical properties on micromolluscs in an urban park

  • V. S. Budakova Bogdan Khmelnitsky Melitopol State Pedagogical University
  • N. V. Yorkina Bogdan Khmelnitsky Melitopol State Pedagogical University
  • P. M. Telyuk Bogdan Khmelnitsky Melitopol State Pedagogical University
  • A. K. Umerova Bogdan Khmelnitsky Melitopol State Pedagogical University
  • O. M. Kunakh Oles Honchar Dnipro National University
  • O. V. Zhukov Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: species response; soil properties; ecological niche; transformation; hemeroby

Abstract

The paper assesses the effect of transformation of soil physical properties on the abundance of micromolluscs in the conditions of an urban park. The studies were carried out in Novooleksandrivskiy Park (Melitopol, Ukraine). An experimental polygon was represented by 7 transects with 18 sampling points in each. The interval between the points in the transect, as well as the interval between transects, was 3 meters. The total area of the polygon was 1,134 m2. The tree species growing within the polygon were Quercus robur, Sophora japonica, and Acer campestre. Shrubs were represented by Ulmus laevis, Tilia cordata, Celtis occidentalis, and Morus nigra. The locations of the trees and shrubs were mapped. The crowns of tree and shrub plants formed a dense canopy and a shady light regime. The grass cover was practically absent. The soil mechanical resistance, soil aggregate-size distribution, electrical conductivity of soil, soil moisture and bulk density were measured. We recorded 618 individuals of Vallonia pulchella, 120 individuals of Cochlicopa lubrica, and 58 individuals of Acanthinula aculeata within the surveyed polygon. We extracted three principal components, which could explain 60.9% of the variation in the feature space of the soil properties. The principal component 1 explained 42.0% of the variation of the feature space and depended on the soil penetration resistance throughout the whole profile, aggregate composition, density, electric conductivity and moisture content of soil. This component reflected a tendency for soil penetration resistance and soil density to increase near recreational trails. The principal component 1 was used to indicate the gradient of recreational transformation of the soil. The principal component 2 was able to explain 10.6% of the variation in the feature space. It negatively correlated with the distance from the recreational trail, soil penetration resistance at the depth of 35 cm or more, soil electrical conductivity, and the proportion of aggregates greater than 3 mm in size. This component positively correlated with soil penetration resistance at 0–5 cm depth and the proportion of aggregates less than 0.5 mm in size. This component can be interpreted as a "halo" from the recreational trail, or a gradient of indirect soil transformations adjacent to the zone of intense recreational load. The principal component 3 was able to explain 8.3% of the variation in the feature space. It positively correlated with soil penetration resistance at the depth of 20–40 cm, the proportion of 0.5–7.0 mm aggregates, and soil moisture. It negatively correlated with the proportion of aggregates larger than 7 mm and smaller than 0.25 mm. This component indicated a variation in soil properties that was induced by causes independent of recreational exposure. The extracted gradients of soil properties significantly influenced the abundance of micromollusc populations. The abundance of all species decreased after increase in recreational load. Micromollusc species responded to direct recreational exposure as plateau (C. lubrica) and asymmetric unimodal responses (V. pulchella and A. aculeata).

References

Al-Shammary, A. A. G., Kouzani, A. Z., Kaynak, A., Khoo, S. Y., Norton, M., & Gates, W. (2018). Soil bulk density estimation methods: A review. Pedosphere, 28(4), 581–596.

Asabere, S. B., Zeppenfeld, T., Nketia, K. A., & Sauer, D. (2018). Urbanization leads to increases in pH, carbonate, and soil organic matter stocks of arable soils of kumasi, Ghana (West Africa). Frontiers in Environmental Science, 6, 119.

Azlin, Y. N., & Philip, E. (2004). Soil compaction and tree decline along a recreational forest trail in Malaysia. Arboricultural Journal, 27(3), 239–243.

Balashov, I. A., Neiber, M. T., & Hausdorf, B. (2020). Phylogeny, species delimitation and population structure of the steppe-inhabiting land snail genus Helicopsis in Eastern Europe. Zoological Journal of the Linnean Society, 2020, zlaa156.

Ballantyne, M., & Pickering, C. M. (2015). The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. Journal of Environmental Management, 164, 53–64.

Baur, A., & Baur, B. (1988). Individual movement patterns of the minute land snail Punctum pygmaeum (Draparnaud) (Pulmonata: Endodontidae). Veliger, 30, 372–376.

Bird, S. B., Herrick, J. E., Wander, M. M., & Murray, L. (2007). Multi-scale variability in soil aggregate stability: Implications for understanding and predicting semi-arid grassland degradation. Geoderma, 140, 106–118.

Boycott, A. E. (1934). The habitats of land mollusca in Britain. The Journal of Ecology, 22(1), 1–38.

Brygadyrenko, V. V. (2014). Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecologica, 41(1), 8–16.

Brygadyrenko, V. V. (2015). Influence of tree crown density and density of the herbaceous layer on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(2), 134–148.

Brygadyrenko, V. V. (2016a). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102.

Brygadyrenko, V. V. (2016b). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information – theoretic approach. Springer, Berlin.

Butler, A. J. (1976). A shortage of food for the terrestrial snail Helicella virgata in South Australia. Oecologia, 25(4), 349–371.

Campbell, D. M. H., White, B., & Arp, P. A. (2013). Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data. Journal of Soil and Water Conservation, 68(6), 460–473.

Čejka, T., & Hamerlík, L. (2009). Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Polish Journal of Ecology, 57(4), 741–747.

Cejka, T., Horsak, M., & Nemethova, D. (2007). The composition and richness of Danubian floodplain forest land snail faunas in relation to forest type and flood frequency. Journal of Molluscan Studies, 74(1), 37–45.

Cernohorsky, N. H., Horsák, M., & Cameron, R. A. D. (2010). Land snail species richness and abundance at small scales: The effect of distinguishing between live individuals and empty shells. Journal of Conchology, 40, 233–241.

Chiba, S. (2007). Species richness patterns along environmental gradients in island land molluscan fauna. Ecology, 88(7), 1738–1746.

Cowie, R. H. (2009). Microhabitat choice and high temperature tolerance in the land snail Theba pisana (Mollusca: Gastropoda). Journal of Zoology, 207(2), 201–211.

Cowie, R. H., & Cain, A. J. (1983). Laboratory maintenance and breeding of land snails, with an example from Helix aspersa. Journal of Molluscan Studies, 49(2), 176–177.

Davies, P., Gale, C. H., & Lees, M. (1996). Quantitative studies of modern wet-ground molluscan faunas from Bossington, Hampshire. Journal of Biogeography, 23(3), 371–377.

de Fraga, R., Ferrão, M., Stow, A. J., Magnusson, W. E., & Lima, A. P. (2018). Different environmental gradients affect different measures of snake β-diversity in the Amazon rainforests. PeerJ, 6, e5628.

Didukh, Y. P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv.

Douglas, D. D., Brown, D. R., & Pederson, N. (2013). Land snail diversity can reflect degrees of anthropogenic disturbance. Ecosphere, 4(2), art28.

El-Gendy, K. S., Gad, A. F., & Radwan, M. A. (2021). Physiological and behavioral responses of land molluscs as biomarkers for pollution impact assessment: A review. Environmental Research, 193, 110558.

Ellenberg, H., Weber, H. E., Dull, R., Wirth, V., Werner, W., & Paulissen, D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 104, 284–285.

Evans, J. G. (1972). Land snails in archaeology. Seminar Press, London, New York.

Fattet, M., Fu, Y., Ghestem, M., Ma, W., Foulonneau, M., Nespoulous, J., Le Bissonnais, Y., & Stokes, A. (2011). Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength. Catena, 87(1), 60–69.

Gołas-Siarzewska, M. (2013). Malacofauna of the Wawel Hill in Cracow (Poland) – a quarter of a century after its first description. Folia Malacologica, 21(1), 19–23.

Goncharenko, I. V., & Yatsenko, H. M. (2020). Phytosociological study of the forest vegetation of Kyiv urban area (Ukraine). Hacquetia, 19(1), 99–126.

Graham, L. J., & Eigenbrod, F. (2019). Scale dependency in drivers of outdoor recreation in England. People and Nature, 1(3), 406–416.

Graveland, J., & Gijzen, T. (1994). Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea, 82, 299–314.

Groffman, P. M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., Heffernan, J. B., Hobbie, S. E., Larson, K. L., Morse, J. L., Neill, C., Nelson, K., O’Neil-Dunne, J., Ogden, L., Pataki, D. E., Polsky, C., Chowdhury, R. R., & Steele, M. K. (2014). Ecological homogenization of urban USA. Frontiers in Ecology and the Environment, 12(1), 74–81.

Heegaard, E. (2002). The outer border and central border for species – Environmental relationships estimated by non-parametric generalised additive models. Ecological Modelling, 157, 131–139.

Hettenbergerová, E., Horsák, M., Chandran, R., Hájek, M., Zelený, D., & Dvořáková, J. (2013). Patterns of land snail assemblages along a fine-scale moisture gradient. Malacologia, 56, 31–42.

Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. Journal of Applied Ecology, 39(5), 708–720.

Horáčková, J., Horsák, M., & Juřičková, L. (2014). Land snail diversity and composition in relation to ecological variations in Central European floodplain forests and their history. Community Ecology, 15(1), 44–53.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185.

Horsák, M. (2006). Mollusc community patterns and species response curves along a mineral richness gradient: A case study in fens. Journal of Biogeography, 33(1), 98–107.

Horsák, M., & Cernohorsky, N. (2008). Mollusc diversity patterns in Central European fens: Hotspots and conservation priorities. Journal of Biogeography, 35(7), 1215–1225.

Horsák, M., & Hájek, M. (2003). Composition and species richness of molluscan communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: The poor–rich gradient. Journal of Molluscan Studies, 69(4), 349–357.

Horsák, M., Hájek, M., Dítě, D., & Tichý, L. (2007). Modern distribution patterns of snails and plants in the Western Carpathian spring fens: Is it a result of historical development? Journal of Molluscan Studies, 73(1), 53–60.

Horsák, M., Juřičková, L., Kintrová, K., & Hájek, O. (2009). Patterns of land snail diversity over a gradient of habitat degradation: A comparison of three Czech cities. Biodiversity and Conservation, 18(13), 3453–3466.

Horsák, M., Lososová, Z., Čejka, T., Juřičková, L., & Chytrý, M. (2013). Diversity and biotic homogenization of urban land-snail faunas in relation to habitat types and macroclimate in 32 central european cities. PLoS One, 8(8), e71783.

Huang, X., Sheng, Z., Zhang, Y., Ding, J., & He, K. (2015). Impacts of trails on plants, soil and their interactions in the subalpine meadows of Mount Jade Dragon, Northwestern Yunnan of China. Grassland Science, 61(4), 204–216.

Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46.

Hylander, K., Nilsson, C., Gunnar Jonsson, B., & Göthner, T. (2005). Differences in habitat quality explain nestedness in a land snail meta-community. Oikos, 108(2), 351–361.

Ihtimanski, I., Nedkov, S., & Semerdzhieva, L. (2020). Mapping the natural heritage as a source of recreation services at national scale in Bulgaria. One Ecosystem, 5, e54621.

Jankowiak, A., & Bernard, R. (2013). Coexistence or spatial segregation of some Vertigo species (Gastropoda: Vertiginidae) in a Carex rich fen in Central Poland? Journal of Conchology, 41, 399–406.

Jansen, F., & Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman-Olff-Fresco models revisited. Journal of Vegetation Science, 24(6), 1108–1117.

Jorat, M. E., Goddard, M. A., Manning, P., Lau, H. K., Ngeow, S., Sohi, S. P., & Manning, D. A. C. (2020). Passive CO2 removal in urban soils: Evidence from brownfield sites. Science of the Total Environment, 703, 135573.

Juřičková, L., Horsák, M., Cameron, R., Hylander, K., Míkovcová, A., Hlaváč, J. Č., & Rohovec, J. (2008). Land snail distribution patterns within a site: The role of different calcium sources. European Journal of Soil Biology, 44(2), 172–179.

Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34(1), 111–117.

Karlin, E. J. (1961). Ecological relationships between vegetation and the distribution of land snails in Montana, Colorado and New Mexico. American Midland Naturalist, 65(1), 60.

Kimura, K., & Chiba, S. (2010). Interspecific interference competition alters habitat use patterns in two species of land snails. Evolutionary Ecology, 24(4), 815–825.

Korchagina, K. V., Smagin, A. V., & Reshetina, T. V. (2014). Assessing the technogenic contamination of urban soils from the profile distribution of heavy metals and the soil bulk density. Eurasian Soil Science, 47(8), 824–833.

Kroetsch, D., & Wang, C. (2008). Particle size distibution. In: Carter, M. R. & Gregorich, E. G. (Eds.). Soil sampling and methods of analysis. CRC Press, Boca Raton. Pp. 713–726.

Książkiewicz, Z., & Gołdyn, B. (2015). Needle in a haystack: Predicting the occurrence of wetland invertebrates on the basis of simple geographical data. A case study on two threatened micro-mollusc species (Gastropoda: Vertiginidae) from Poland. Wetlands, 35(4), 667–675.

Książkiewicz, Z., Kiaszewicz, K., & Gotdyn, B. (2013). Microhabitat requirements of five rare vertiginid species (Gastropoda, Pulmonata: Vertiginidae) in wetlands of Western Poland. Malacologia, 56, 95–106.

Książkiewicz-Parulska, Z., & Ablett, J. D. (2017). Microspatial distribution of molluscs and response of species to litter moisture, water levels and eutrophication in moist, alkaline ecosystems. Belgian Journal of Zoology, 147(1), 37–53.

Książkiewicz-Parulska, Z., & Pawlak, K. (2016). Rare species of micromolluscs in the city of Poznań (W. Poland) with some notes on wintering of Vertigo moulinsiana (Dupuy, 1849). Folia Malacologica, 24(2), 97–101.

Kuczyńska, A., & Moorkens, E. (2010). Micro-hydrological and micro-meteorological controls on survival and population growth of the whorl snail Vertigo geyeri Lindholm, 1925 in groundwater fed wetlands. Biological Conservation, 143(8), 1868–1875.

Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Kramarenko, A. S., & Yorkina, N. V. (2018). Fitting competing models and evaluation of model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems, 9(2), 198–202.

Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Zadorozhnaya, G. A., & Kramarenko, A. S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28(3), 91–99.

Landsberg, J. D., Miller, R. E., Anderson, H. W., & Tepp, J. S. (2003). Bulk density and soil resistance to penetration as affected by commercial thinning in Northeastern Washington. Portland.

Lososová, Z., Horsák, M., Chytrý, M., Čejka, T., Danihelka, J., Fajmon, K., Hájek, O., Juřičková, L., Kintrová, K., Láníková, D., Otýpková, Z., Řehořek, V., & Tichý, L. (2011). Diversity of Central European urban biota: Effects of human-made habitat types on plants and land snails. Journal of Biogeography, 38(6), 1152–1163.

Lovett, G. M., Traynor, M. M., Pouyat, R. V., Carreiro, M. M., Zhu, W. X., & Baxter, J. W. (2000). Atmospheric deposition to oak forests along an urban – rural gradient. Environmental Science and Technology, 34(20), 4294–4300.

Machin, J. (2009). Structural adaptation for reducing water-loss in three species of terrestrial snail. Journal of Zoology, 152(1), 55–65.

Maier, M. J. (2015). Companion Package to the Book “R: Einfuhrung durch angewandte Statistik”. R package version 0.9.3.

Martin, K., & Sommer, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31(4), 531–545.

Michaelis, J., & Diekmann, M. R. (2017). Biased niches – species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS One, 12(8), 1–16.

Moreno-Rueda, G. (2014). Distribution of arid-dwelling land snails according to dryness. Journal of Arid Environments, 103, 80–84.

Mueller, J. H., & Schuessler, K. F. (1962). Statistical reasoning in sociology. Houghton Mifflin Company, Boston.

Myšák, J., Horsák, M., Svobodová, E., & Cernohorsky, N. (2013). Small-scale distribution of terrestrial snails: Patterns of species richness and abundance related to area. Journal of Molluscan Studies, 79(2), 118–127.

Nekola, J. C., & Smith, T. M. (1999). Terrestrial gastropod richness patterns in Wisconsin carbonate cliff communities. Malacologia, 41(1), 253–269.

Nunes, G., & Santos, S. (2012). Environmental factors affecting the distribution of land snails in the Atlantic Rain Forest of Ilha Grande, Angra dos Reis, RJ, Brazil. Brazilian Journal of Biology, 72(1), 79–86.

Pearce, T. A. (1997). Interference and resource competition in two land snails: Adults inhibit conspecific juvenile growth in field and laboratory. Journal of Molluscan Studies, 63(3), 389–399.

Pouyat, R. V., Yesilonis, I. D., Szlavecz, K., Csuzdi, C., Hornung, E., Korsós, Z., Russell-Anelli, J., & Giorgio, V. (2008). Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecology, 23(10), 1187–1203.

Putchkov, A. V., Brygadyrenko, V. V., & Markina, T. Y. (2019). Ground beetles of the tribe Carabini (Coleoptera, Carabidae) in the main megapolises of Ukraine. Vestnik Zoologii, 53(1), 3–12.

R Core Team. (2020). R: A language and environment for statistical computing (3.6.3). R Foundation for Statistical Computing, Vienna, Austria.

Renforth, P., Manning, D. A. C., & Lopez-Capel, E. (2009). Carbonate precipitation in artificial soils as a sink for atmospheric carbon dioxide. Applied Geochemistry, 24(9), 1757–1764.

Rydgren, K., Økland, R. H., & Økland, T. (2003). Species response curves along environmental gradients. A case study from SE Norwegian swamp forests. Journal of Vegetation Science, 14(6), 869–880.

Santos, X., Bros, V., & Ros, E. (2012). Contrasting responses of two xerophilous land snails to fire and natural reforestation. Contributions to Zoology, 81(3), 167–180.

Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E., & Evans, T. A. (2014). Microhabitats reduce animal’s exposure to climate extremes. Global Change Biology, 20(2), 495–503.

Schenková, V., Horsák, M., Hájek, M., Plesková, Z., Dítě, D., & Pawlikowski, P. (2014). Mollusc and plant assemblages controlled by different ecological gradients at Eastern European fens. Acta Oecologica, 56, 66–73.

Seifritz, W. (1990). CO2 disposal by means of silicates. Nature, 345(6275), 486–486.

Severns, P. M. (2007). Does standing water and predator presence structure a wetland terrestrial mollusc community? Wetlands, 27(4), 964–971.

Shachak, M., Leeper, A., & Degen, A. (2002). Effect of population density on water influx and distribution in the desert snail Trochoidea seetzenii. Écoscience, 9(3), 287–292.

Shelford, V. E. (1911). Ecological succession. I. Stream fishes and the method of physiographic analysis. The Biological Bulletin, 21(1), 9–35.

Shelford, V. E. (1931). Some concepts of bioecology. Ecology, 12(3), 455–467.

Smagin, A. V., Azovtseva, N. A., Smagina, M. V., Stepanov, A. L., Myagkova, A. D., & Kurbatova, A. S. (2006). Criteria and methods to assess the ecological status of soils in relation to the landscaping of urban territories. Eurasian Soil Science, 39(5), 539–551.

Stoll, P., Gatzsch, K., Rusterholz, H.-P., & Baur, B. (2012). Response of plant and gastropod species to knotweed invasion. Basic and Applied Ecology, 13(3), 232–240.

Ström, L., Hylander, K., & Dynesius, M. (2009). Different long-term and short-term responses of land snails to clear-cutting of boreal stream-side forests. Biological Conservation, 142(8), 1580–1587.

Sulikowska-Drozd, A., & Horsák, M. (2007). Woodland mollusc communities along environmental gradients in the East Carpathians. Biologia, 62(2), 201–209.

Szybiak, K., Błoszyk, J., Koralewska-Batura, E., & Gołdyn, B. (2009). Small-scale distribution of wintering terrestrial snails in forest site: Relation to habitat conditions. Polish Journal of Ecology, 57(3), 525–535.

Tomczyk, A. M., & Ewertowski, M. W. (2016). Recreational trails in the Poprad Landscape Park, Poland: The spatial pattern of trail impacts and use-related, environmental, and managerial factors. Journal of Maps, 12(5), 1227–1235.

Vasenev, V. I., Smagin, A. V., Ananyeva, N. D., Ivashchenko, K. V., Gavrilenko, E. G., Prokofeva, T. V., Patlseva, A., Stoorvogel, J. J., Gosse, D. D., & Valentini, R. (2017). Urban soil’s functions: Monitoring, assessment, and management. In: Adaptive soil management: From theory to practices. Springer Singapore, Singapore. Pp. 359–409.

Wäreborn, I. (1969). Land molluscs and their environments in an oligotrophic area in Southern Sweden. Oikos, 20, 461–479.

Williamson, P., Cameron, R. A. D., & Carter, M. A. (1976). Population density affecting adult shell size of snail Cepaea nemoralis L. Nature, 263(5577), 496–497.

Williamson, P., Cameron, R. A. D., & Carter, M. A. (1977). Population dynamics of the landsnail Cepaea nemoralis L.: A six-year study. The Journal of Animal Ecology, 46(1), 181–194.

Yom-Tov, Y. (1970). The effect of predation on population densities of some desert snails. Ecology, 51(5), 907–911.

Yorkina, N. V. (2016). Impact of technogenic pollution of urban environment on vitality indicators of urban biota (mollusk fauna, soil mesofauna, epiphytic lichens). Moscow University Biological Sciences Bulletin, 71(3), 177–183.

Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in technosols (Nikopol Manganese Ore Basin, Ukraine). Ecologica Montenegrina, 17, 29–45.

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekologia Bratislava, 38(1), 1–10.

Yurkova, N. E., Yurkov, A. M., & Smagin, A. V. (2009). Ecological status of soils in Moscow Zoo. Eurasian Soil Science, 42(3), 342–348.

Zadorozhnaya, G. A., Andrusevych, K. V., & Zhukov, O. V. (2018). Soil heterogeneity after recultivation: Ecological aspect. Folia Oecologica, 45(1), 46–52.

Zarzycki, K., Trzcinska-Tacik, H., Rozanski, W., Szelag, Z., Wolek, J., & Korzeniak, U. (2002). Ecological indicator values of vascular plants of Poland [Ekologiczne liczby wskaznikowe roślin naczyniowych Polski]. Instytut Botaniki im. W. Szafera, Polska Akademia Nauk, Kraków.

Zhukov, A. V. (2015). Influence of usual and dual wheels on soil penetration resistance: the GIS-approach. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 5(3), 73–100.

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., Fedushko, M. P., Kotsun, V. I., Zhukova, Y. O., & Potapenko, O. V. (2019). Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114.

Zhukov, O. V., Kunakh, O. M., Taran, V. O., & Lebedinska, M. M. (2016). Spatial variability of soils electrical conductivity within arena of the river Dnepr valley (territory of the natural reserve “Dniprovsko–Orilsky”). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 129–157.

Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018). The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45, 8–23.

Published
2021-05-12
Section
Articles

Most read articles by the same author(s)

> >>